Published Oct 16, 2011



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Miguel Alberto Melgarejo-Rey, MSc

Andrés Gaona-Barrera, MSc

Carlos Barreto-Suárez

##plugins.themes.bootstrap3.article.details##

Abstract

This paper presents an approach for time varying non-linear channel equalization based on fuzzy systems and single-neuron training. The method consists of two stages: the first one uses supervised learning in order to determine channel states and to provide an initial tuning of the fuzzy equalizer parameters. The second one dynamically adjusts the equalizer to follow the varying behavior of the channel through unsupervised learning. This proposal is compared with a radial basis network over the equalization of a time-varying communication channel reported in previous works. Experiments are carried out through Monte Carlo simulations. Results show that the proposed approach presents a performance than that of a radial basis function in terms of the bit error rate of a communication system.

Keywords

Digital communications, equalizers (electronics), adaptive filters, neural networks (computer science), fuzzy systemComunicaciones digitales, ecualizadores (electrónica), filtros adaptivos, redes neurales (computadores), sistemas difusos

References
ASSAF, R.; EL ASSAD, S. y HARKOUSS, Y. Adaptive equalization of nonlinear time varyingchannels using radial basis network. Information and Communication Technologies, 2006. ICTTA ’06. 2nd. 2006.
BISHOP, C. M. Neural networks for pattern recognition. Oxford: Oxford University Press. 1995.
CHEN, S.; MULGREW, B. y GRANT, P. M. A clustering technique for digital communications channel equalization using radial basis function networks. Neural Networks, IEEE Transactions on. 1993, vol. 4, núm. 4, pp. 570-590.
FIGUEROA, J. A. y CORRALES, D. A. Realización hardware de un algoritmo de sintonía automática para ecualizadores difusos de canales de comunicación no lineales de orden Dos. Ingeniería. 2006a, pp. 68-74.
HAYKIN, S. Neural networks. A comprehensive foundation. Upper Saddle River, NJ: Prentice Hall PTR, 1999.
LEE, K. Y. Complex fuzzy adaptive filter with LMS algorithm. Signal Processing, IEEE Transactions on. 1996, vol. 44, núm. 2, pp. 424-427.
LIANG, Q. y MENDEL, J. M. Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters. Fuzzy Systems, IEEE Transactions on. 2000, vol. 8, núm. 5, pp. 551-563.
MULGREW, B. Applying radial basis functions. Signal Processing Magazine, IEEE. 1996, vol. 13, núm. 2, pp. 50-65.
OLARTE, F.; LADINO, P. y MELGAREJO, M. Hardware realization of fuzzy adaptive filters for non linear channel equalization. Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on. 2005, vol. 2, pp. 932-935.
PATRA, S. K. y MULGREW, B. Efficient architecture for Bayesian equalization using fuzzy filters. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on. 1998, vol. 45, núm. 7, pp. 812-820.
PROAKIS, J. G. Digital communications. New York: McGraw-Hill, 2001.
WANG, L. X. A course in fuzzy systems and control. Upper Saddle River, NJ: Prentice-Hall Int, 1997.
WANG, L.-X. y MENDEL, J. M. Fuzzy adaptive filters, with application to nonlinear channel equalization. Fuzzy Systems, IEEE Transactions on. 1993, vol. 1, núm. 3, pp. 161-170.
How to Cite
Melgarejo-Rey, M. A., Gaona-Barrera, A., & Barreto-Suárez, C. (2011). Adaptive fuzzy equalization based on neuron grouping for time-varying non-linear channels. Ingeniería Y Universidad, 15(2). https://doi.org/10.11144/Javeriana.iyu15-2.edab
Section
Articles

Most read articles by the same author(s)