##plugins.themes.bootstrap3.article.main##


Pedro Mario Wightman Rojas https://orcid.org/0000-0002-7641-2090

Luis Alberto Mass Noriega https://orcid.org/0000-0003-1170-9181

Augusto Salazar Silva https://orcid.org/0000-0002-1063-7561

Abstract

Objective: This paper aims to present Selfienemia, a novel non-invasive hemoglobin estimation mobile application working under controlled illumination conditions. Materials and methods: Mobile application was supported by a parameter optimization and curve fitting backend in the cloud to provide dynamic and device independent results based on a-priori observations and the World Health Organization’s (WHO) color scale.  Thirty-four and sixty-four individuals were involved during both the mobile app training and posterior blind test respectively. Results: Selfienemia (Mobile App) was found to be suitable as a non-invasive hemoglobin estimation tool. Estimation levels showed high correlation against the gold standard invasive test. Skin pigmentation and color components were found to have specific relationships labeling individuals within one Hb concentration group. Conclusion: Selfienemia may provide an effective way to screen hemoglobin in medical shortage situations. However, it still can’t replace traditional invasive testing. Future work must include testing additional fitting techniques for illumination aware scenarios as well as quantification of skin pigmentation effects on estimation results.

##plugins.themes.bootstrap3.article.details##

Keywords

Mobile applications, hemoglobin, photo, cloud, analysis, color scale, World Health Organization

References
[1] C. A. Viloria Núñez, P. Sanmartín Mendoza, K. Avila Hernández, y D. Jabba Molinares, “Internet de las cosas y la Salud centrada en el Hogar”, Rev. Científica Salud Uninorte, vol. 32, núm. 2, jun. 2016.
[2] K. Avila, P. Sanmartin, D. Jabba, y M. Jimeno, “Applications Based on Service-Oriented Architecture (SOA) in the Field of Home Healthcare”, Sensors, vol. 17, núm. 8, jul. 2017.
[3] P. Prasanna, S. Jain, N. Bhagat, y A. Madabhushi, “Decision support system for detection of diabetic retinopathy using smartphones”, en Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2013 7th International Conference on, 2013, pp. 176–179.
[4] “WHO | Anaemia prevention and control”, WHO. [En línea]. Disponible en: http://www.who.int/medical_devices/initiatives/anaemia_control/en/. [Consultado: 12-jul-2017].
[5] “WHO | Global Targets 2025”, WHO. [En línea]. Disponible en: http://www.who.int/nutrition/global-target-2025/en/. [Consultado: 12-jul-2017].
[6] G. Santra, “Usefulness of examination of palmar creases for assessing severity of anemia in Indian perspective: A study from a tertiary care center”, Int. J. Med. Public Health, vol. 5, núm. 2, 2015.
[7] World Health Organization, “Hemoglobin Colour Scale ...A practical answer to a vital need”. 2002.
[8] M. R. Kumar, M. Mahadevappa, y D. Goswami, “Low cost point of care estimation of Hemoglobin levels”, en Medical Imaging, m-Health and Emerging Communication Systems (MedCom), 2014 International Conference on, 2014, pp. 216–221.
[9] J. Critchley y I. Bates, “Haemoglobin colour scale for anaemia diagnosis where there is no laboratory: a systematic review”, Int. J. Epidemiol., vol. 34, núm. 6, pp. 1425–1434, 2005.
[10] “WHO | Micronutrient deficiencies”, WHO. [En línea]. Disponible en: http://www.who.int/nutrition/topics/ida/en/. [Consultado: 12-jul-2017].
[11] C. Aldridge, H. M. Foster, M. Albonico, S. M. Ame, y A. Montresor, “Evaluation of the diagnostic accuracy of the Haemoglobin Colour Scale to detect anaemia in young children attending primary healthcare clinics in Zanzibar”, Trop. Med. Int. Health, vol. 17, núm. 4, pp. 423–429, 2012.
[12] D. A. Nardone, K. M. Roth, D. J. Mazur, y J. H. McAfee, “Usefulness of physical examination in detecting the presence or absence of anemia”, Arch. Intern. Med., vol. 150, núm. 1, pp. 201–204, 1990.
[13] J. R. Zucker, B. A. Perkins, H. Jafari, J. Otieno, C. Obonyo, y C. C. Campbell, “Clinical signs for the recognition of children with moderate or severe anaemia in western Kenya.”, Bull. World Health Organ., vol. 75, núm. Suppl 1, p. 97, 1997.
[14] C. D. Hanning y J. M. Alexander-Williams, “Pulse oximetry: a practical review.”, BMJ, vol. 311, núm. 7001, p. 367, 1995.
[15] J. F. Kelleher, “Pulse oximetry”, J. Clin. Monit., vol. 5, núm. 1, pp. 37–62, 1989.
[16] O. Wieben, “Light absorbance in pulse oximetry”, en Design of pulse oximeters, CRC Press, 1997, pp. 53–68.
[17] D. C. Harris, “Fundamentals of Spectrophotometry”, en Quantitative chemical analysis, 8a ed., vol. 1, China Lake, California: Macmillan, 2010, pp. 393–414.
[18] L. Lamhaut, R. Apriotesei, X. Combes, M. Lejay, P. Carli, y B. Vivien, “Comparison of the accuracy of noninvasive hemoglobin monitoring by spectrophotometry (SpHb) and HemoCue® with automated laboratory hemoglobin measurement”, J. Am. Soc. Anesthesiol., vol. 115, núm. 3, pp. 548–554, 2011.
[19] E. J. Van Kampen y W. G. Zijlstra, “Spectrophotometry of hemoglobin and hemoglobin derivatives”, Adv. Clin. Chem., vol. 23, pp. 199–257, 1983.
[20] A. R. Kent, S. H. Elsing, y R. L. Hebert, “Conjunctival vasculature in the assessment of anemia”, Ophthalmology, vol. 107, núm. 2, pp. 274–277, 2000.
[21] K. Yurdakök, Ş. N. Güner, y S. S. Yalçın, “Validity of using pallor to detect children with mild anemia”, Pediatr. Int., vol. 50, núm. 2, pp. 232–234, 2008.
[22] A. Kalantri, M. Karambelkar, R. Joshi, S. Kalantri, y U. Jajoo, “Accuracy and reliability of pallor for detecting anaemia: a hospital-based diagnostic accuracy study”, PLoS One, vol. 5, núm. 1, p. e8545, 2010.
[23] N. Sinha, P. R. Deshmukh, y B. S. Garg, “Evaluation of WHO haemoglobin colour scale & palmar pallor for screening of anaemia among children (6-35 months) in rural Wardha, India”, Indian J. Med. Res., vol. 128, núm. 3, p. 278, 2008.
[24] S. Suner, G. Crawford, J. McMurdy, y G. Jay, “Non-invasive determination of hemoglobin by digital photography of palpebral conjunctiva”, J. Emerg. Med., vol. 33, núm. 2, pp. 105–111, 2007.
[25] M. R. Kumar, H. Misra, S. Hiwale, y M. Ramachandra, “Digital WHO hemoglobin color scale: Analysis and performance”, en The Sixth International Conference on EHealth, Telemedicine, and Social Medicine (E℡EMED 2014) IARIA, 2014, pp. 53–58.
[26] H. Ranganathan y N. Gunasekaran, “Simple method for estimation of hemoglobin in human blood using color analysis”, IEEE Trans. Inf. Technol. Biomed., vol. 10, núm. 4, pp. 657–662, 2006.
[27] E. J. Wang, W. Li, D. Hawkins, T. Gernsheimer, C. Norby-Slycord, y S. N. Patel, “HemaApp: Noninvasive Blood Screening of Hemoglobin Using Smartphone Cameras”, en Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, New York, NY, USA, 2016, pp. 593–604.
[28] “Perception Variables - Basic Color Theory for the Desktop - Technical Guides”. [En línea]. Disponible en: http://dba.med.sc.edu/price/irf/Adobe_tg/color/variables.html. [Consultado: 12-jul-2017].
[29] “Human Vision - Basic Color Theory for the Desktop - Technical Guides”. [En línea]. Disponible en: http://dba.med.sc.edu/price/irf/Adobe_tg/color/vision.html. [Consultado: 12-jul-2017].
[30] M. R. Desai et al., “Recognition of pallor associated with severe anaemia by primary caregivers in western Kenya”, Trop. Med. Int. Health, vol. 7, núm. 10, pp. 831–839, 2002.
[31] “Light and Color - Basic Color Theory for the Desktop - Technical Guides”. [En línea]. Disponible en: http://dba.med.sc.edu/price/irf/Adobe_tg/color/light.html. [Consultado: 12-jul-2017].
[32] “Light and Matter - Basic Color Theory for the Desktop - Technical Guides”. [En línea]. Disponible en: http://dba.med.sc.edu/price/irf/Adobe_tg/color/matter.html. [Consultado: 12-jul-2017].
How to Cite
Wightman Rojas, P., Mass Noriega, L., & Salazar Silva, A. (2019). Hemoglobin screening using cloud based mobile photography applications [Online First]. Ingenieria Y Universidad, 23(2). https://doi.org/10.11144/Javeriana.iyu23-2.hsuc
Section
Industrial and systems engineering
Most read articles by the same author(s)