Published Jun 7, 2012



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


Simón Jesús Fygueroa-Salgado, PhD

Juan Carlos Serrano-Rico, MSc

José Rodolfo Molina-Mojica, BSc

##plugins.themes.bootstrap3.article.details##

Abstract

This article describes a method to determine theoretically the equilibrium composition, the thermodynamic properties and the adiabatic flame temperature of the combustion products of a fuel-air mixture taking into consideration that reactive products include twelve chemical species. It considers that fuel is an oxygenated hydrocarbon and that air is composed of oxygen, nitrogen and argon. By applying mass conservation and chemical balance conditions to the combustion reaction, this yields a closed algebraic system of equations which is linearized by using the Taylor series expansion and solved by using the Gauss pivoting elimination method. The described method allows the theoretical analysis of the combustion process that occurs in reciprocating internal combustion engines. The results obtained by applying the method to the combustion of ethyl alcohol (C2H6O), and by using the developed software, show that the NO concentration decreases with an increasing equivalence ratio, while the H2O, the H2 and the CO concentration increases when increasing such ratio, and that the adiabatic flame temperature reaches its maximum when the ratio is slightly higher than the stoichiometric one.

Keywords

Propiedades termodinámicas, gases de combustión-medición, equilibrio químicoThermodynamic properties, combustion gases – mensuration, chemical equilibrium

References
AGRAWAL, D. D. y GUPTA, C. P. Computer program for constant pressure or constant volume combustion calculations in hydrocarbon-air systems. Transactions of the ASME. 1977, pp. 246-254.
AGRAWAL, D. D.; SHARMA, S. P. y GUPTA, C. P. The calculation of temperature and pressure of flame gases following constant volume combustion. Journal of the Institute of Fuel. 1977, vol. 50, pp. 121-124.
BARIN, I. Thermochemical data of pure substances VCH. Weinheim, Federal Republic of Germany: Verlagsgesellschaft mb-H, D-6940, 1989.
BENSON, R. S. Advanced engineering thermodynamics. 2nd ed. Manchester: University of Manchester- Pergamon International Library, 1977.
CHHEDA, J. N.; HUBER, G. W. y DUMESIC J. A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition. 2007, vol. 46, pp. 7164-7183.
DESANTES, J. M. y LAPUERTA, M. Fundamentos de combustión. Valencia: Servicio de Publicaciones, Universidad Politécnica de Valencia, 1991.
EL-MAHALLAWY, F. y EL-DIN, H. S. Fundamentals and technology of combustion. London: Elsevier, 2002.
ERIKSSON, L. CHEPP: A chemical equilibrium program package for Matlab. SAE Transactions. 2004, vol. 113, núm. 4, pp. 730-741.
ESPINOZA, H.; PATIÑO, L.; GONZÁLEZ, Y. y LEZAMA, I. Modelo predictivo de combustión de mezclas de gas natural en motores de encendido por chispa. Revista Ingeniería e Investigación. 2007, vol. 27, núm. 2, pp. 11-17.
FERGUSON, C. R. Internal combustion engines. Applied Thermosciences. New York: John Wiley and Sons, 1986.
GORDON, S. y MCBRIDE, B. J. Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman Jouguet detonations. NASA Publication SP 273. 1971.
HARKER, J. H. y ALLEN, D. A. The calculation of the temperature and composition of flame gases. Journal of Institute of Fuel. 1969, vol. 42, pp. 183-187.
HARKER, J. H. The calculation of equilibrium flame gas composition. Journal of Institute of Fuel. 1967, vol. 40, pp. 206-210.
HERNÁNDEZ, J.; LAPUERTA, M. y PÉREZ-COLLADO, J. A combustion kinetic model for estimating diesel engine NOx emissions. Combustion. Theory and Modelling. 2006, vol. 10, núm. 4, pp. 639-657.
HORLOCK, J. H. y WINTERBORNE, D. E. The thermodynamics and gas dynamics of internal combustion engines. Oxford: Clarendon Press, 1986.
JARQUIN, G.; POLUPAN, G. y RODRÍGUEZ, J. Cálculo de los productos de combustión empleando métodos numéricos. Mecánica Computacional. 2003, vol. XXII, pp. 2442-2452.
JARUNGTHAMMACHOTE, S y DUTTA, A. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy. 2007, vol. 32, pp.1660-1669.
LUTZ, A. E.; RUPLEY, F. M. y KEE R. J. EQUIL: A CHEMKIN implementation of STANJAN, for computing chemical equilibria. s. l.: Sandia National Laboratories, 1998.
LUTZ, A. E.; KEE, R. J. y MILLER, J. A. SENKIN: A Fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. s. l.: Sandia National Laboratories, 1988.
MCBRIDE, B. J. y GORDON, S. Fortran IV program for calculation of thermodynamic data. NASA Publication TN-D-4097, 1967.
MILLER, P. A. y MCCONNEL, S. G. A computerized method for assessing flame temperature of stoichiometric and lean natural gas mixtures. Journal of Institute of Fuel. 1972, vol. 45, pp. 43-47.
MORLEY, C. GasEQ: A Chemical Equilibrium Program for Windows [documento en línea]. 2007. .
OLIKARA, C. y BORMAN, G. L. A computer program for calculating properties of equilibrium combustion products with some applications to I. C. engines. SAE International, 1975.
PÉREZ, J. Modelado cinético-químico del proceso de combustión diesel para la estimación de contaminantes gaseosos. Tesis doctoral, Universidad de Castilla-La Mancha, España, 2007.
RAKOPOULOS, C. D.; ANTONOPOULOS, K. A.; RAKOPOULOS, D. C.; HOUNTALAS, D. T. y GIAKOUMIS, E. G. Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins. Energy Conversion and Management. 2006, vol. 47, pp. 3272-3287.
RAMAJO, D. y NIGRO, N. Modelización numérica de la combustión en motores de combustión interna. Mecánica Computacional. 2004, vol. XXIII.
REYNOLDS, W. C. The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN. Technical report, Stanford University, Dept of Mech. Eng., 1986.
SANKARA, R. Numerical methods for scientists and engineers. México: Prentice-Hall, 2003.
SHIMO, N. Fundamental research of oil combustion with highly preheated air. Proceedings of the 2nd International Seminar on High Temperature Combustion in Industrial Furnaces, 2000.
TURNS, S. R. An introduction to combustion: Concepts and applications. 2nd ed. New York: Mc Graw Hill, 2000.
VAEZI, M.; PASSANDIDEH-FARD, M. y MOGHIMAN, M. On a numerical model for gasification of biomass materials. 1st WSEAS Int. Conf. on Computational Chemistry, Cairo, Egypt, 2007.
WAY, R. J. Methods for determination of composition and thermodynamic properties of combustion products for internal combustion engines calculations. Proceedings of the Institution of Mechanical Engineers. 1977, vol. 190, núms. 60/76, pp. 687-697.
WEBER, R.; SMART, J. P. y KAMP, W. V. On the (MILD) combustion of gaseous, liquid, and solids fuels in high temperature preheated air. Proccedings of the Combustion Institute. 2005, vol. 30, pp. 2623-2629.
YUSAF, T. F.; YUSOFF, M. Z.; HUSSEIN, I. y FONG, S. H. A quasi one-dimensional simulation of a 4 stroke spark ignition hydrogen fuelled engine. American Journal of Applied Sciences. 2005, vol. 2 núm. 8, pp. 1206-1212.
How to Cite
Fygueroa-Salgado, S. J., Serrano-Rico, J. C., & Molina-Mojica, J. R. (2012). A method to determine the thermodynamic properties of fuel mixtures considering twelve chemical species in the products. Ingenieria Y Universidad, 16(1), 59. https://doi.org/10.11144/Javeriana.iyu16-1.mpdp
Section
Articles

Most read articles by the same author(s)