Published May 27, 2021



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


Hernán Ricardo Hadad, PhD https://orcid.org/0000-0002-8664-9382

María Alejandra Maine, PhD https://orcid.org/0000-0001-5910-9420

María de las Mercedes Mufarrege, PhD https://orcid.org/0000-0003-4033-8607

Gisela Alfonsina Di Luca, PhD https://orcid.org/0000-0001-8509-7929

Gabriela Cristina Sanchez, MSc https://orcid.org/0000-0003-1878-9145

##plugins.themes.bootstrap3.article.details##

Abstract

Objectives: The purpose of this work was to compare nutrient concentrations in water, sediment, and in plant tissues of Eichhornia crassipes and Panicum elephantipes from lotic and lentic environments of the Middle Parana River floodplain (Argentina). Materials and Methods: The study was carried out over an 18-month period. Plants, water, and sediment were collected in a lake (lentic environment) and in a river (lotic environment) from the Middle Parana River floodplain. Water and sediment were sampled in sites where P. elephantipes or E. crassipes were predominant and in sites without vegetation. Results and Discussion: The lentic and lotic environments dominated by E. crassipes showed the highest ammonium concentrations. The sediment from the lotic environment showed total phosphorus (TP) and total Kjeldahl nitrogen (TKN) concentrations significantly lower than those found in the sediment from the lentic environment. In the lentic environment, the sediment from the lake with the dominance of E. crassipes showed the highest TKN concentration, while the sediment from the lake dominated by P. elephantipes showed the highest TP concentration. For both plant species and for both environments, TKN and TP tissue concentrations were significantly higher in leaves in comparison with roots. Conclusions: Our results could be used to optimize the efficiency of treatment wetlands. Additionally, the use of locally available macrophytes as contaminant bioaccumulators in the Middle Parana River floodplain is completely feasible.

Keywords

humedales, macrófitas, fósforo, nitrógenowetlands, macrophytes, phosphorus, nitrogen

References
[1] C. Villar et al., “Heavy metal concentrations in the Lower Paraná River and right margin of the Río de la Plata Estuary,” Verh. Internat. Verein. Limnol., vol. 26, pp. 963–966, 1998.
[2] C. Villar, J. Stripeikis, M. Tudino, L. d’Huicque, O. Troccoli, and C. Bonetto, “Trace metal concentrations in coastal marshes of the Lower Paraná River and the Río de la Plata Estuary,” Hydrobiologia, vol. 397, pp. 187-195, 1999. doi: 10.1023/A:1003730306880
[3] J. J. Neiff, A. Poi de Neiff, and S. A. L. Casco, “The effect of prolonged floods on Eichhornia crassipes growth in Paraná River floodplain lakes,” Acta Limnol. Brasilien., vol. 13, pp. 51–60, 2001.
[4] A. J. Cardwell, D. W. Hawker, and M. Greenway, “Metal accumulation in aquatic macrophytes from south east Queensland, Australia,” Chemosphere, vol. 48, no. 7, pp. 653–663, 2002. doi: 10.1016/S0045-6535(02)00164-9
[5] J. P. Coelho, M. E. Pereira, A. C. Duarte, and M. A. Pardal, “Contribution of primary producers to mercury trophic transfer in estuarine ecosystems: Possible effects of eutrophication,” Mar. Pollut. Bull., vol. 58, no. 3, pp. 358–365, 2009. doi: 10.1016/j.marpolbul.2008.10.014
[6] P. Krems, M. Rajfur, M. Wacławek, and A. Kłos, “The use of water plants in biomonitoring and phytoremediation of waters polluted with heavy metals,” Ecol. Chem. Eng., vol. 20, no. 2, pp. 353–370, 2013. doi: 10.2478/eces-2013-0026
[7] G. Bonanno, J. A. Borg, and V. di Martino, “Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment,” Sci. Tot. Environ., vol. 576, pp. 796–806, 2017. doi: 10.1016/j.scitotenv.2016.10.171
[8] X. Alonso et al., “Macrophytes as potential biomonitors in peri-urban wetlands of the Middle Parana River (Argentina),” Environ. Sci. Pollut. Res., vol. 25, nos. 3-4, pp. 312–323, 2018. doi: 10.1007/s11356-017-0447-7
[9] G. Bonanno and J. Vymazal, “Compartmentalization of potentially hazardous elements in macrophytes: Insights into capacity and efficiency of accumulation,” J. Geochem. Explor., vol. 181, pp. 22–30, 2017. Available: https://doi.org/10.1016/j.gexplo.2017.06.018
[10] D. D. Jenačkovic, I. D. Zlatkovic, D. V. Lakušic, and V. D. Randelovic, “Macrophytes as bioindicators of the physicochemical characteristics of wetlands in lowland and mountain regions of the central Balkan Peninsula,” Aquat. Bot., vol. 134, pp. 1–9, 2016. doi: 10.1016/j.aquabot.2016.06.003
[11] G. Mayora, B. Schneider, and A. Rossi, “Turbidity and dissolved organic matter as significant predictors of spatio-temporal dynamics of phosphorus in a large river-floodplain system,” River Res. App., vol. 34, no. 3 pp. 629–639, 2018. doi: 10.1002/rra.3288
[12] V. H. Lallana, “Productividad de Eichhornia crassipes (Pontederiaceae) en una laguna isleña de la cuenca del Río Paraná Medio. I. Análisis del crecimiento,” Bol. Soc. Arg. Bot., vol. 20, pp. 99–107, 1981. Available: https://botanicaargentina.org.ar/wp-content/uploads/2018/09/99-107010.pdf
[13] H. R. Hadad and M. A Maine, “Phosphorous amount in floating and rooted macrophytes growing in wetlands from the Middle Paraná River floodplain (Argentina),” Ecol. Eng., vol. 31, no. 4, pp. 251–258, 2007. doi: 10.1016/j.ecoleng.2007.08.001
[14] H. R. Hadad, M. A. Maine, and C. A. Bonetto, “Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment,” Chemosphere, vol. 63, no. 10, pp. 1744–1753, 2006. doi: 10.1016/j.chemosphere.2005.09.014
[15] H. R. Hadad, M. A. Maine, G. S. Natale, and C. A. Bonetto, “The effect of nutrient addition on metal tolerance in Salvinia herzogii,” Ecol. Eng., vol. 31, no. 2, pp. 122–131, 2007. Available: https://doi.org/10.1016/j.ecoleng.2007.06.012
[16] H. R. Hadad, M. M. Mufarrege, M. Pinciroli, G. A. di Luca, and M. A. Maine, “Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland,” Arch. Environ. Contam. Toxicol., vol. 58, no. 3, pp. 666–675, 2010. doi: 10.1007/s00244-009-9454-0
[17] H. R. Hadad, M. A. Maine, M. M. Mufarrege, M. V. del Sastre, and G. A. di Luca, “Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes,” J. Hazard. Mat., vol. 190, nos. 1-3, pp. 1016–1022, 2011. Available https://doi.org/10.1016/j.jhazmat.2011.04.044
[18] M. A. Maine, N. L. Suñe, and C. Bonetto, “Nutrient concentrations in the Middle Paraná River: Effect of the floodplain lakes,” Arch. Hydrobiol., vol. 160, no. 1, pp. 85–103, 2004. doi: 10.1127/0003-9136/2004/0160-0085
[19] M. A. Maine, N. L. Suñe, and S. C. Lagger, “Chromium bioaccumulation: Comparison of the capacity of two floating aquatic macrophytes,” Water Res., vol. 38, no. 6, pp. 1494–1501, 2004. Available: https://doi.org/10.1016/j.watres.2003.12.025
[20] M. A. Maine, N. Suñe, H. Hadad, G. Sánchez, and C. Bonetto, “Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry,” Ecol. Eng., vol. 26, no. 4, pp. 341–347, 2006. Available: https://doi.org/10.1016/j.ecoleng.2005.12.004
[21] M. A. Maine, N. L. Suñe, H. R. Hadad, G. Sánchez, and C. A. Bonetto, “Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland,” J. Environ. Manag., vol. 90, no. 1, pp. 355–363, 2009. DOI: 10.1016/j.jenvman.2007.10.004
[22] M. A. Maine et al., “Sustainability of a constructed wetland faced with a depredation event,” J. Environ. Manag., vol. 128C, pp. 1–6, 2013. doi: 10.1016/j.jenvman.2013.04.054
[23] M. A. Maine et al., “Long-term performance of two fee-water surface wetlands for metallurgical effluent treatment,” Ecol. Eng., vol. 98, pp. 372–377, 2017. doi: 10.1016/j.ecoleng.2016.07.005
[24] M. Iriondo, “Quaternary lakes of Argentina,” Palaeogeogr. Palaeocl., vol. 70, nos. 1-3, pp. 81–88, 1989. Available: https://doi.org/10.1016/0031-0182(89)90081-3
[25] D. F. Westlake, “Macrophytes”, in A Manual on Methods for Measuring Primary Production in Aquatic Environments, R. A. Vollenweider, Ed. Oxford: Blackwell, 1974, pp. 32–42.
[26] APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 22nd ed. Washington D. C.: American Public Health Association, 2012.
[27] United States Environmental Protection Agency (USEPA), Method 200.2: Sample Preparation Procedure for Spectrochemical Determination of Total Recoverable Elements. Washington D. C.: Author, 1994. Available: https://19january2017snapshot.epa.gov/sites/production/files/2015-08/documents/method_200-2_rev_2-8_1994.pdf
[28] J. Murphy and J. Riley, “A modified single solution method for determination of phosphate in natural waters,” Anal. Chim. Acta, vol. 27, pp. 31–36, 1962. Available: https://doi.org/10.1016/S0003-2670(00)88444-5
[29] L. Lijklema, “The role of iron in the exchange of phosphate between water and sediments,” in Interactions Between Sediments and Fresh Water, H. L. Golterman, Ed. The Hague: Dr. W. Junk, 1977, pp. 313–317.
[30] L. Lijklema, “Considerations in modelling the sediment-water exchange of phosphorus,” Hydrobiologia, vol. 253, pp. 219–231, 1993.
[31] M. Reina, J. L. Espinar, and L. Serrano, “Sediment phosphate composition in relation to emergent macrophytes in the Doñana Marshes (SW Spain),” Water Res., vol. 40, no. 6, pp. 1185–1190, 2006. Available: https://doi.org/10.1016/j.watres.2006.01.031
[32] C. Willis, and W. J. Mitsch, “Effects of hydrology and nutrients on seedling emergence and biomass of aquatic macrophytes from natural and artificial seed banks,” Ecol. Eng., vol. 4, no. 2, pp. 65–76, 1995. Available: https://doi.org/10.1016/0925-8574(94)00046-8
[33] B. Schneider, E. R. Cunha, L. A. Espínola, M. Marchese, and S. M. Thomaz, “The importance of local environmental, hydrogeomorphological and spatial variables for beta diversity of macrophyte assemblages in a Neotropical floodplain,” J. Veg. Sci., vol. 00, pp. 1–12, 2019. Available: doi: 10.1111/jvs.12707
[34] J. A. de Marte, and R. T. Hartman, “Studies on absorption of 32P, 59Fe, and 45Ca by water-milfoil (Myriophyllum exalbescens Fernald),” Ecology, vol. 55, no. 1, pp. 188–194, 1974. doi: 10.2307/1934635
[35] A. H. Eugelink, “Phosphorus uptake and active growth of Elodea canadensis Michx. and Elodea nuttallii,” Water Sci. Technol., vol. 37, no. 3, pp. 59–65, 1998. Available: https://doi.org/10.1016/S0273-1223(98)00056-0
[36] M. M., Mufarrege, H. R., Hadad, and M. A. Maine, “Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous,” Archiv. Environ. Contam. Toxicol., vol. 58, no. 1, pp. 53–61, 2010. Available: doi: 10.1007/s00244-009-9350-7
[37] M. M., Mufarrege, H. R., Hadad, and G. A. di Luca, “Organic matter effects on the Cr(VI) removal efficiency and tolerance of Typha domingensis,” Water Air Soil Pollut., vol. 229, no. 384, pp. 1–12, 2018.
[38] S. Wahl, P. Ryser, and P. J. Edwards, “Phenotypic plasticity of grass root anatomy in response to light intensity and nutrient supply,” Ann. Bot., vol. 88, no. 6, pp. 1071–1078, 2001. Available: https://doi.org/10.1006/anbo.2001.1551
[39] M. V. Campanella, H. R. Hadad, M. A. Maine, and R. Markariani, “Efectos del fósforo de un efluente cloacal sobre la morfología interna y externa de Eichhornia crassipes (Mart.) Solms, en un humedal artificial”, Limnetica, vol. 24, no. 2, pp. 263–272, 2005. Available: http://www.limnetica.net/documentos/limnetica/limnetica-24-2-p-263.pdf
[40] N. Piwpuan, A. Jampeetong, and H. Brix, “Ammonium tolerance and toxicity of Actinoscirpus grossus: A candidate species for use in tropical constructed wetland systems,” Ecotoxicol. Environ. Saf., vol. 107, pp. 319–328, 2014. Available: https://doi.org/10.1016/j.ecoenv.2014.05.032
[41] A. Kabata-Pendias, Trace Elements in Soils and Plants. Boca Raton, FL: Taylor & Francis Group, 2011.
[42] P. R. Adler, S. T. Summerfelt, D. M. Glenn, and F. Takeda, “Evaluation of a wetland system designed to meet stringent phosphorus discharge requirements,” Water Environ. Res., vol. 68, no. 5, pp. 836–840, 1996. doi: 10.2175/106143096X127839
[43] M. C. Panigatti, and M. A. Maine, “Influence of nitrogen species (NH4+ and NO3−) on the dynamics of P in water-sediment-Salvinia herzogii systems,” Hydrobiologia, vol. 492, nos. 1-3, pp. 151–157, 2003. doi: 10.1023/A:1024860213797
[44] M. Greenway, “Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia,” Water Sci. Technol., vol. 48, no. 2, pp. 121–128, 2003.
[45] T. B. Brezinová, and J. Vymazal, “Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea in a constructed treatment wetland,” Ecol. Eng., vol. 79, pp. 94–99, 2015. doi: 10.1016/j.ecoleng.2015.04.008
[46] T. Avellán, and P. Gremillion, “Constructed wetlands for resource recovery in developing countries,” Renew. Sustain. Energy Rev., vol. 99, pp. 42–57, 2019. doi: 10.1016/j.rser.2018.09.024
How to Cite
Hadad, H. R., Maine, M. A., Mufarrege, M. de las M., Di Luca, G. A., & Sanchez, G. C. (2021). Nutrient Concentrations in Macrophytes from Lotic and Lentic Environments of the Middle Parana River, Argentina. Ingenieria Y Universidad, 25. https://doi.org/10.11144/Javeriana.iued25.ncml
Section
Special Section: Wetland Systems