Published Oct 12, 2021



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


Andrea Carolina Pabón-Beltrán https://orcid.org/0000-0003-3877-7678

Felipe Sanabria-Martínez https://orcid.org/0000-0002-7610-2439

Custodio Vásquez-Quintero, Msc https://orcid.org/0000-0001-6563-0044

José José Barba-Ortega, PhD https://orcid.org/0000-0003-3415-1811

Ely Dannier Valbuena-Niño, PhD https://orcid.org/0000-0003-4154-7179

##plugins.themes.bootstrap3.article.details##

Abstract

In this research, the concentration-depth profiles reached by titanium and nitrogen particles, on the surface of AISI/SAE 1020 carbon steel substrates, by using of ion implantation technique, are studied. The ions are surface deposited by means of high voltage pulsed discharges and electric arc discharge under high vacuum conditions. The concentration and position distribution of the metallic and non-metallic species are obtained by simulation of the interaction of ions with the matter, stopping and ranges of ions in the matter, by the computer program transport of ions in matter. The implantation dose is calculated from the discharge data and the previously established study parameters in this work. From the simulation results, the depth profiles demonstrated that titanium and nitrogen ions may reach up to 300 Å and 600 Å and concentrations of 1.478 x 1016 ions⁄cm2 and 2.127 x 1016 ions⁄cm2, respectively. The formation of titanium microdroplets upon the surface of the substrates is identified from the micrographs obtained by the scanning electron microscopy technique; furthermore, the presence of titanium and nitrogen implanted on the surface of the substrate is verified through the elemental composition analysis by the energy dispersive spectroscopy, validating the effect of ion implantation on ferrous alloys.

Keywords

Carbon steel, water-supply rural, electric arc, ion implantation, surface modification, transport of ions in matteracero al carbón, dosis, arco eléctrico, implantación iónica, modificación superficial, transporte de iones en la materia

References
[1] G. Dearnaley, “Ion bombardment and implantation,” Rep. Prog. Phys., vol. 32, no. 2, pp. 405–491, 1969. doi: 10.1088/0034-4885/32/2/301
[2] V. I. Khvesyuk and P. A. Tsygankov, “The use of a highvoltage discharge at low pressure for 3D ion implantation,” Surf. Coat. Technol., vol. 96, no. 1, pp. 68–74, 1997. doi: 10.1016/S0257-8972(97)00117-5
[3] V. D. Dougar-Jabon, J. Dulce-Moreno, and P. A. Tsygankov, “High voltage pulse discharge for ion treatment of metals,” Rev. Sci. Instrum., vol. 73, no. 2, pp. 828–830, 2002. doi: 10.1063/1.1429785
[4] H. J. Dulcé, V. D. Dougar, and P. A. Tsygankov, “Implantación iónica,” Rev. Respuestas, vol. 8, pp. 19–30, 2003. Available: https://doi.org/10.22463/0122820X.707
[5] H. J. Dulce-Moreno, P. A. Tsygankov, V. Dugar-Zhabon, E. D. V. Niño, and F. F. Parada, “Estudio de los haces electrónicos en la descarga eléctrica de alto voltaje a bajas presiones,” Puente Rev. Científ., vol. 5, no. 2, pp. 21–26, 2011. doi: 10.18566/puente.v5n2.a03
[6] Y. Pauleau, “Interaction of ions and electrons with solid surfaces,” in Materials surface processing by directed energy techniques, First ed. UK, Elsevier, 2006, pp.1–29.
[7] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM the stopping and range of ion in matter,” Nucl. Instrum. Method. Phys. Res., vol. 268, pp. 1818–1823, 2010. doi: 10.1016/j.nimb.2010.02.091
[8] E. Rauhala et al., “Status of ion beam data analysis and simulation software,” Nucl. Instr. Meth. Phys. Res. B, vol. 244, pp. 436–456, 2006.doi: 10.1016/j.nimb.2005.10.024
[9] E. Torres, and V. Dougar-Jabon, “Aplicación del método de dinámica molecular a la implantación de iones de nitrógeno en hierro,” Rev. Col. Fís., vol. 38, no. 1, pp. 89–92, 2006.
[10] F. H. Vera Rivera, B. R. Pérez Gutiérrez, H. J. Dulce-Moreno, F. Duran-Flórez, and E. D. V. Niño, “Estimate of the concentration of implanted ions in solid substrates using a web application,” J. Phys. Conf. Ser., vol. 743, no. 012016, pp. 1–5, 2016. doi: 10.1088/1742-6596/743/1/012016
[11] B. R. Pérez Gutiérrez, F. H. Vera-Rivera, and E. D. V. Niño., “Estimation of the ionic charge of non-metallic species into an electrical discharge through a web application,” J. Phys. Conf. Ser., vol. 743, no. 012017, pp. 1–5, 2016. doi: 10.1088/1742-6596/743/1/012017
[12] F. H. Vera-Rivera, V. D. Dugar-Zhabon, H. J. Dulce-Moreno, and E. D. V. Niño, “Development of a web application for estimate the total charge in an electric discharge,” J. Phys. Conf. Ser., vol. 687, no. 012058, pp. 1–4, 2016, doi: 10.1088/1742-6596/687/1/012058
[13] Standard guide for preparation of metallographic specimens, ASTM E3-11, 2011. Available: https://www.astm.org/DATABASE.CART/HISTORICAL/E3-11.htm
[14] E. D. V. Niño, and V. Dugar-Zhabon, “Comportamiento del acero SAE-4140 implantado con iones de nitrógeno en ambientes hidrogenados,” Rev. Col. Fís., vol. 38, no. 1, pp. 61–64, 2006. Available: http://www.revcolfis.org/publicaciones/vol38_1/articulos/pdf/3801061.pdf
[15] E. D. Valbuena Niño, H. J. Dulcé Moreno, and V. Dugar-Zhabon, “Caracterización del Acero AISI 4140 implantado por iones Nitrógeno,” Rev. Col. Fís., vol. 42, no. 3, pp. 387–392, 2010. Available: http://fisica.udea.edu.co/rcf/ojs/index.php/rcf/article/download/420329/121
[16] H. J. Dulce Moreno, V. Dougar-Zhabon, and C. R. Cabrera, “Estudio mediante XPS de un acero al carbono implantado con nitrógeno por medio de descargas de alto voltaje a bajas presiones,” Rev. Col. Fís., vol. 35, no. 2, pp. 458–462, 2003.
[17] E. D. Valbuena Niño, D. Y. Peña Ballesteros, M. S. Reyes Corzo, and V. Dugar-Zhabon, “Estudio experimental de la resistencia a la corrosión de un acero al carbono AISI-SAE 1020 implantado con iones de titanio,” Rev. LatinAm. Met. Mater., vol. 33, no. 1, pp. 138–146, 2013. Available: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjMpZXds8ntAhWDVN8KHbe6CwcQFjAAegQIARAC&url=http%3A%2F%2Fwww.rlmm.org%2Fdownload.php%3Ff%3DRLMM-2013-V33N1.pdf&usg=AOvVaw1d-ppHcTA_YidhJZaqZcbT
[18] E. D. Valbuena Niño, H. Garnica, V. D. Dugar-Zhabon, and J. L. Herrera Súarez, “Determinación de la velocidad de corrosión de aceros AISI SAE 1010, 1020, 1045 implantados con iones Ti,” Rev. Tumbaga, vol. 1, no. 7, pp. 37–45, 2012. Available: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiM8qCitMntAhXDl-AKHckoAUcQFjAAegQIAxAC&url=http%3A%2F%2Frevistas.ut.edu.co%2Findex.php%2Ftumbaga%2Farticle%2Fdownload%2F41%2F41&usg=AOvVaw2UWB7q44n2MHZTNb_4H_Um
[19] E. D. Valbuena Niño, D. V. Salinas, D. Y. Peña, and L. F. Chinchilla, “Modificación superficial de un acero AISI SAE 1045 mediante la implantación de iones de nitrógeno y titanio,” Iteckne, vol. 8, no. 1, pp. 31–36, 2011. doi: 10.15332/iteckne.v8i1.259
[20] E. D. V. Niño, H. Garnica, V. Dugar-Zhabon, and G. Castillo, “Behavior of AISI SAE 1020 steel implanted by titanium and exposed to bacteria sulphate deoxidizer,” J. Phys. Conf. Ser., vol. 511, no. 012080, pp. 1–5, 2014. doi: 10.1088/1742-6596/511/1/012080
[21] H. J. Dulcé, A. Rueda, and V. D. Dougar, “3DII implantation effect on corrosion properties of the AISI/SAE 1020 steel,” Phys. Stat. Sol. (c), vol. 2, no. 10, pp. 3778–3781, 2005. Available: https://doi.org/10.1002/pssc.200461837
[22] B. J. Castro, I. Uribe, M. A. Silva, and V. D. Dougar, “Cinética de permeación de hidrógeno en un acero implantado con iones de nitrógeno,” Rev. Col. Fís. vol. 34, no. 1, pp. 362–365, 2002. Available: https://es.scribd.com/document/70282668/CINETICA-DE-PERMEACION-DE-HIDROGENO-EN-UN-ACERO-IMPLANTADO-CON-IONES-DE-NITROGENO
[23] A. Rueda, H. J. Dulcé, G. Peña, and P. P. Torres, “Estudio del comportamiento de la corrosión nitrógeno,” Rev. Col. Fís., vol. 38, no. 2, pp. 894–897, 2006. Available: http://www.revcolfis.org/publicaciones/vol38_2/articulos/pdf/3802894.pdf
[24] J. R. Conrad, R. A. Dodd, and X. Qiu, “Plasma source ion implantation: A new cost-effective, non-line-of-sight technique for ion implantation of materials,” Surf. Coat. Technol. J., vol. 36, pp. 927–937, 1988.
[25] F. Sanabria, F. Viejo, and E. D. V. Niño, “Performance in saline environment of a carbon steel surface modified by three dimensional ion implantation,” J. Phys. Conf. Ser., vol. 1403, no. 012015, pp. 1–7, 2019. doi: 10.1088/1742-6596/1403/1/012015
[26] F. Sanabria-Martínez, E. D. Valbuena-Niño, M. Rincón-Joya, H. A. Estupiñán-Duran, and F. Viejo-Abrante, “Surface evaluation of carbon steel doped with nitrogen ions,” Rev. UIS Ing., vol. 19, no. 1, pp. 205–212, 2020. doi: 10.18273/revuin.v19n1-2020019
[27] P. A. Tsygankov, F. F. Parada Becerra, V. D. Dugar-Zhabon, A. Plata, and E. D. V. Niño, “Artificially modulated hard coatings produced with a vacuum arc evaporator,” J. Phys. Conf. Ser., vol. 687, no. 012005, pp. 1–4, 2016. doi: 10.1088/1742-6596/687/1/012005
[28] E. K. Mussada and P. K. Patowari, “Characterisation of layer deposited by electric discharge coating process,” Surf. Eng., vol. 31, no. 10, pp. 796–802, 2015. doi: 10.1179/1743294415Y.0000000048
[29] F. Parada-Becerra, R. Cabanzo, V. Dugar-Zhabon, P. Tsygankov, E. Mejía-Ospino, and E. D. V. Niño, “Plasma temperature measurement in a hybrid discharge by using optical diagnostics,” J. Phys. Conf. Ser., vol. 370, no. 012054, pp. 1–6, 2012. doi: 10.1088/1742-6596/370/1/012054
[30] E. D. Valbuena Niño, V. Dugar-Zhabon, H. J. Dulcé Moreno, G. Peña Rodríguez, H. A. Garnica, and P. Tsygankov, “Aplicación de descargas simultáneas de alto voltaje y arco eléctrico para el tratamiento superficial avanzado de metales,” Iteckne, vol. 9, no. 1, pp. 14–20. 2012, doi: 10.15332/iteckne.v9i1.56
[31] P. Tsygankov et al., “Estudio de características voltio-ampéricas y peculiaridades de funcionamiento de un vaporizador de arco en vacío,” Rev. Col. Fís., vol. 43, no. 2, pp. 458–462, 2011.
[32] V. D. Dugar-Zhabon, H. J. Dulcé-Moreno, H. A. Garnica-Villamizar, and E. D. Valbuena-Niño, “A new method for surface modifications of carbon steels and alloys,” Mater. Res., vol. 15, no. 6, pp. 969-973, 2012. doi: 10.1590/S1516-14392012005000133
[33] E. D. Valbuena-Niño, L. Gil, L. Hernández, and F. Sanabria, “Corrosion resistance of a carbon-steel surface modified by three-dimensional ion implantation and electric arc,” Adv. Mater. Res., vol. 9, no. 1 , pp. 1–14, 2020. doi: 10.12989/amr.2020.9.1.001
[34] E. D. Valbuena-Niño, L. Gil, L. Hernández-Molina, J. J. Barba-Ortega, and V. Dugar-Zhabon, “Characterization of the low alloy steel modified superficially with ions of titanium and nitrogen,” CT&F, Cienc., Tecnol. Fut., vol. 6, no. 3, pp. 127–138, 2016. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832016000100008
[35] D. Peña, P. Fontalvo, H. Estupiñán, D. Niño, and W. Vesga, “Evaluación experimental de la Resistencia a la corrosión de un acero AISI-SAE 4140 implantado con iones de nitrógeno,” DYNA, vol. 76, no. 159, pp. 43–52, 2009. Available: https://www.redalyc.org/pdf/496/49611945005.pdf
How to Cite
Pabón-Beltrán, A. C., Sanabria-Martínez, F., Vásquez-Quintero, C., Barba-Ortega, J. J., & Valbuena-Niño, E. D. (2021). Study of Concentration-depth Profiles of the Titanium and Nitrogen Ions by SRIM/TRIM Simulation. Ingenieria Y Universidad, 25. https://doi.org/10.11144/Javerina.iued25.scpt
Section
Industrial and systems engineering

Most read articles by the same author(s)