Published Jul 25, 2022


Google Scholar
Search GoogleScholar

Laura Andrea Florez-Bedoya

Laura Estefanía Mora-Joaqui

Beatriz Cruz-Muñoz, PhD

Rubén José Dorantes-Rodríguez, PhD

Sebastián Ospina-Castro, MSc

Alexander Ríos-Gaviria, MSc



We present the design, construction, and implementation of thin film deposition equipment based on the Sol/Gel dip-coating technique for the fabrication of coatings under controlled deposition conditions and working environment at ambient temperature and pressure. The deposition system includes a 304 stainless steel structure and a moving platform that holds the substrate and is transported along vertical axes at a deposition distance of up to 30 cm in height. The mechanical and electronic design was considered, using computer-aided development and dimensional validation (for the structure and the motion transmission system) and the programming of the system using the Arduino platform. The design focused on the deposition speed control for the functional equipment operations, whose operating principle is based on a PWM scheme, achieving an immersion/extraction speed parameter in ranges between 1.5 cm/s and 3.5 cm/s (with a resolution of ± 0.2 cm/s). The operation of the equipment and the reproducibility of the deposits were tested by studying the optical properties of CuCoMn coatings on glass. A substrate immersion/extraction speed of 1.5 cm/s and precursor agitation time (0.83 h - 0.98 h) were used, obtaining absorbances higher than 90%. In conclusion, the implemented prototype will allow the research group to produce reproducible thin films of better quality than those made manually, which can be produced at a low cost and offer the possibility of sustainable maintenance of the equipment.


Dip-coating, open-source programming, PWM, sol-gel, thin filmsDip-coating, películas delgadas, programación de código abierto, PWM, sol-gel

[1] N. Mahallawy, M. Shoeib and S. Eletriby, "Effect of Sol-Gel Process Parameters on Optical Properties of CuCoMnO x Selective Coat for Solar Energy Applications," J. Am. Sci., vol. 12, no. 4, pp. 41-48, 2016.
[2] A. Jilani, M. Abdel-wahab and A. Hammad, “Advance Deposition Techniques for Thin Film and Coating,” in Modern Technologies for Creating the Thin-film Systems and Coatings, 1st ed. InTech, 2017, pp. 145-152.
[3] D. Pérez Saura, “Diseño, construcción y control de una plataforma de experimentación para la automatización de ensayos con muestras de films de polietileno,” M.S. thesis, Dept. Ing. Sist. Aut., U. Politécnica de Cartagena, España, 2017. [Online]. Available:
[4] P. Adámek, “Construction of Dip-Coater,” Edukacja – Technika – Informatyka, vol. 16, no. 2, pp. 152-156, 2016.
[5] S. Oberloier and J. Pearce, “General Design Procedure for Free and Open-Source Hardware for Scientific Equipment,” Designs, vol. 2, no. 1, p. 2, 2017.
[6] L. Segura, V. Guerrero, D. Loza Matovelle, and D. Reza, Eds., “Mechanical and Electronic Systems of an Open Source Based Spin and Dip Coater,” in Rev. Nal. Politécnica, vol. 37, no. 2, p. 53, 2015. [Online]. Available:

[7] I. Medina, A. Loera, L. Arámbula and F. Rizo, “Diseño y fabricación de un aparato para el depósito de películas delgadas por el método de rotación”, in Investigación y Ciencia, no. 45, pp. 44-49, 2009. [Online]. Available:
[8] Y. Zhu, J. Shi, Q. Huang, Y. Fang, L. Wang and G. Xu, “A superhydrophobic solar selective absorber used in a flat plate solar collector,” RSC Advances, vol. 7, no. 54, pp. 34125-34130, 2017.
[9] R. Budynas, J. Nisbett, J. Murrieta Murrieta, E. Alatorre Miguel and J. Shigley, “Engranajes: descripción general,” in Diseño en ingeniería mecánica de Shigley, 8th ed. México, D.F.: McGraw-Gill Interamericana, 2008, ch. 13, pp. 667-685.
[10] M. Cirstea, “Modeling and design of digital electronic systems,” in Int. Conf. Develop. and Appl. Syst. (DAS), 2016.
[11] A. Velásquez, J. Urquijo and Y. Gutiérrez, “Diseño y construcción de un reactor mecatrónico para el crecimiento de películas delgadas por la técnica de recubrimiento por inmersión,” Ing. y Ci., vol. 10, no. 20, pp. 93-113, 2014.
[12] Bureau International des poids et Measure (BIPM) JCGM 100:2012 Evaluation of measurement data - Guide to the expression of uncertainty in measurement.
[13] M. He and R. Chen, “Structural and optical properties of CuMnCoOx spinel thin films prepared by a citric acid-based sol–gel dip coating route for solar absorber applications,” J. Sol-Gel Sci. Technol., vol. 74, no. 2, pp. 528-536, 2015.
[14] A. Bartyzel, “Synthesis, thermal study and some properties of N2O4—donor Schiff base and its Mn(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes,” J. Therm. Anal. Calorim., vol. 127, no. 3, pp. 2133-2147, 2016.
[15] Standard Practice for Computing the Colors of Objects by Using the CIE System, ASTM E308 - 18, American Society for Testing and Materials, June 2018. [Online]. Available:
[16] A. Faroqi, M. Ramdhani, F. Frasetyio and A. Fadhil, “DC Motor Speed Controller Design using Pulse Width Modulation,” IOP Conf. Ser.: Mat. Sci. and Eng., vol. 434, pp. 1-10, 2018.
[17] J. Sun and Q. Sun, “Design and simulation of PWM DC motor speed regulator based on Proteus,” 2015 Int. Conf. Fluid Power and Mechatronics (FPM), 2015.
[18] L. Petru and G. Mazen, “PWM Control of a DC Motor Used to Drive a Conveyor Belt,” Procedia Eng., vol. 100, pp. 299-304, 2015.
[19] T. Ng, Real time control engineering: Systems and Automation, 1st ed. Singapore: Springer, 2016, pp. 30-45.
[20] M. Kaur and J. Pal, “Distance Measurement of Object by Ultrasonic Sensor HC-SR04,” IJSRD (International Journal of Scientific Research and Development), vol. 3, no. 5, Aug. 2015, Art. no. IJSRDV3I50440.
[21] “Arduino Reference - Function analogWrite”, Arduino, 2016. [Online]. Available: . [Accessed: 14- Oct- 2019].
[22] I. Agung, S. Huda and I. Wijaya, “Speed control for DC motor with pulse width modulation (PWM) method using infrared remote control based on ATmega16 microcontroller,” in Int. Conf. on Smart Green Technology in Electrical and Information Systems (ICSGTEIS), 2014.
[23] P. Dunn, “Uncertainty analysis”, in Measurement and data analysis for engineering and science, 3rd ed. Boca Raton, Florida: CRC Press, 2014, ch. 7, pp. 229-255.
[24] B. Małecka, A. Łącz, E. Drożdż and A. Małecki, “Thermal decomposition of d-metal nitrates supported on alumina,” J. Therm. Anal. Calorim., vol. 119, no. 2, pp. 1053-1061, 2014.
[25] M. Nowicki, P. Švec, D. Jackiewicz and R. Szewczyk, "Magnetic Thermogravimetric Analysis of CuCo and CuFe Amorphous Alloys," Adv. Intel. Syst. Comput., pp. 197-204, 2015.
[26] M. Joly et al., “Optical and structural analysis of sol–gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings,” Sol. Energy Mater. Sol. Cells, vol. 143, pp. 573-580, 2015.
How to Cite
Florez-Bedoya, L. A., Mora-Joaqui, L. E., Cruz-Muñoz, B., Dorantes-Rodríguez, R. J., Ospina-Castro, S., & Ríos-Gaviria, A. (2022). Implementation of an Automated Film Deposition Equipment under the sol/gel Dip-Coating Technique. Ingenieria Y Universidad, 26.
Industrial and systems engineering