Published Dec 16, 2022



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


María Coronell, BSc https://orcid.org/0000-0003-2760-5088

Gina Toscano-Lucas, BSc https://orcid.org/0000-0001-9332-6824

Ricardo Solano, MSc https://orcid.org/0000-0002-4528-2983

Adriana Herrera, PhD https://orcid.org/0000-0002-4355-3401

##plugins.themes.bootstrap3.article.details##

Abstract

Objective: In this paper, the photocatalytic degradation of acetaminophen was evaluated using silver-doped titanium dioxide nanoparticles in a cylindrical-parabolic composed photoreactor. Materials and methods: Titanium dioxide was synthesized via green synthesis using Cymbopogon citratus leaf extract and doped by silver photodeposition. Results and discussion: Morphological information shows that large agglomerates of approximately 49 nm can be attributed to the strong interaction between nanoparticles and their polycrystalline nature. The photodeposition of metallic silver reduces the surface effects, allowing a decrease in the electrostatic interaction and diameter size of the titanium dioxide, as well as the optical properties due to surface poising during the reduction of silver ions to metallic silver. The photocatalytic activity was performed to degrade acetaminophen as the drug model under visible-light radiation. The results are promising, with superior photodegradation of acetaminophen of approximately 37% and 11% for unmodified titanium dioxide and silver-doped titanium dioxide (0.75 at%) nanostructures compared to the commercial photocatalyst, respectively. Conclusions: Accordingly, the potential photocatalytic application of silver-doped titanium dioxide nanostructures is highlighted and represents a promising alternative for the photodegradation of organic compounds from wastewater eluents.

Keywords

Sustainable chemistry, surface modification, doping, photocatalysis, pharmaceuticalQuímica sostenible, modificación superficial, dopaje, fotocatálisis, fármacos

References
[1] M. Negarestani, M. Motamedi, A. Kashtiaray, A. Khadir, and M. Sillanpää, “Simultaneous removal of acetaminophen and ibuprofen from underground water by an electrocoagulation unit: Operational parameters and kinetics,” Groundw. Sustain. Dev., vol. 11, p. 100474, 2020, doi: https://doi.org/10.1016/j.gsd.2020.100474
[2] J. Diaz-angulo, J. Porras, M. Mueses, R. A. Torres-palma, and A. Hernandez-ramirez, “Coupling of heterogeneous photocatalysis and photosensitized oxidation for diclofenac degradation: role of the oxidant species,” J. Photochem. Photobiol. A Chem., vol. 383, p. 112015, 2019, doi: https://doi.org/10.1016/j.jphotochem.2019.112015
[3] Y. Ling, G. Liao, P. Xu, and L. Li, “Fast mineralization of acetaminophen by highly dispersed Ag-g-C3N4 hybrid assisted photocatalytic ozonation,” Sep. Purif. Technol., vol. 216, pp. 1–8, 2019, doi: https://doi.org/10.1016/j.seppur.2019.01.057
[4] X. Wang, M. Brigante, W. Dong, Z. Wu, and G. Mailhot, “Degradation of Acetaminophen via UVA-induced advanced oxidation processes (AOPs). Involvement of different radical species: HO[rad], SO4[rad]− and HO2[rad]/O2[rad]−,” Chemosphere, vol. 258, p. 127268, 2020, doi: https://doi.org/10.1016/j.chemosphere.2020.127268
[5] R. Mu, Y. Ao, T. Wu, C. Wang, and P. Wang, “Synthesis of novel ternary heterogeneous anatase-TiO2 (B) biphase nanowires/Bi4O5I2 composite photocatalysts for the highly efficient degradation of acetaminophen under visible light irradiation,” J. Hazard. Mater., vol. 382, p. 121083, 2020, doi: https://doi.org/10.1016/j.jhazmat.2019.121083
[6] R. Katal, M. H. Davood Abadi Farahani, and H. Jiangyong, “Degradation of acetaminophen in a photocatalytic (batch and continuous system) and photoelectrocatalytic process by application of faceted-TiO2,” Sep. Purif. Technol., vol. 230, p. 115859, 2020, doi: https://doi.org/10.1016/j.seppur.2019.115859
[7] J. Shi et al., “Modified TiO2 particles for heterogeneous photocatalysis under solar irradiation,” Mater. Lett., vol. 279, p. 128472, 2020, doi: https://doi.org/10.1016/j.matlet.2020.128472
[8] E. K. Kambale et al., “Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea),” Heliyon, vol. 6, no. 8, 2020, doi: https://doi.org/10.1016/j.heliyon.2020.e04493
[9] N. Sapawe, N. Surayah Osman, M. Zulkhairi Zakaria, S. Amirul Shahab Syed Mohamad Fikry, and M. Amir Mat Aris, “Synthesis of green silica from agricultural waste by sol-gel method,” Mater. Today Proc., vol. 5, no. 10, pp. 21861–21866, 2018, doi: https://doi.org/10.1016/j.matpr.2018.07.043
[10] D. He et al., “One-step green fabrication of hierarchically porous hollow carbon nanospheres (HCNSs) from raw biomass: Formation mechanisms and supercapacitor applications,” J. Colloid Interface Sci., vol. 581, pp. 238–250, 2021, doi: https://doi.org/10.1016/j.jcis.2020.07.118
[11] R. M. Castellanos, J. Paulo Bassin, M. Dezotti, R. A. R. Boaventura, and V. J. P. Vilar, “Tube-in-tube membrane reactor for heterogeneous TiO2 photocatalysis with radial addition of H2O2,” Chem. Eng. J., vol. 395, p. 124998, 2020, doi: https://doi.org/10.1016/j.cej.2020.124998
[12] A. Cabrera-reina, A. B. Martínez-piernas, Y. Bertakis, N. P. Xekoukoulotakis, A. Agüera, and J. Sánchez, “TiO2 photocatalysis under natural solar radiation for the degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions at pilot plant scale,” Water Res., vol. 166, p. 115037, 2019, doi: https://doi.org/10.1016/j.watres.2019.115037
[13] N. J. Ismail et al., “Hydrothermal synthesis of TiO2 nanoflower deposited on bauxite hollow fibre membrane for boosting photocatalysis of bisphenol A,” J. Water Process Eng., vol. 37, pp. 1–8, 2020, doi: https://doi.org/10.1016/j.jwpe.2020.101504
[14] F. X. Nobre et al., “Heterogeneous photocatalysis of Tordon 2,4-D herbicide using the phase mixture of TiO2,” J. Environ. Chem. Eng., vol. 7, no. 6, p. 103501, 2019, doi: https://doi.org/10.1016/j.jece.2019.103501
[15] R. Satish Kumar, K. S. Min, S. H. Lee, N. Mergu, and Y. A. Son, “Synthesis of novel panchromatic porphyrin-squaraine dye and application towards TiO2 combined photocatalysis,” J. Photochem. Photobiol. A Chem., vol. 397, p. 112595, 2020, doi: https://doi.org/10.1016/j.jphotochem.2020.112595
[16] M. R. Al-Mamun, S. Kader, M. S. Islam, and M. Z. H. Khan, “Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review,” J. Environ. Chem. Eng., vol. 7, no. 5, pp. 1–17, 2019, doi: https://doi.org/10.1016/j.jece.2019.103248
[17] R. Qian et al., “Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview,” Catal. Today, vol. 335, pp. 78–90, 2019, doi: https://doi.org/10.1016/j.cattod.2018.10.053
[18] M. B. Suwarnkar, R. S. Dhabbe, A. N. Kadam, and K. M. Garadkar, “Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method,” Ceram. Int., vol. 40, no. 4, pp. 5489–5496, 2014, doi: https://doi.org/10.1016/j.ceramint.2013.10.137
[19] L. Elsellami, F. Dappozze, A. Houas, and C. Guillard, “Effect of Ag+ reduction on the photocatalytic activity of Ag-doped TiO2,” Superlattices Microstruct., vol. 109, pp. 511–518, 2017, doi: https://doi.org/10.1016/j.spmi.2017.05.043
[20] R. Solano, A. Herrera, D. Maestre, and A. Cremades, “Fe-TiO2 Nanoparticles Synthesized by Green Chemistry for Potential Application in Waste Water Photocatalytic Treatment,” J. Nanotechnol., vol. 2019, pp. 1–11, 2019, doi: https://doi.org/10.1155/2019/4571848
[21] M. A. Behnajady, N. Modirshahla, M. Shokri, and B. Rad, “Enhancement of photocatalytic activity of TiO2 nanoparticles by Silver doping: Photodeposition versus liquid impregnation methods,” Glob. Nest J., vol. 10, no. 1, pp. 1–7, 2008, doi: https://doi.org/10.30955/gnj.000485
[22] M. Pazoki, M. Parsa, and R. Farhadpour, “Removal of the hormones dexamethasone (DXM) by Ag doped on TiO2 photocatalysis,” J. Environ. Chem. Eng., vol. 4, no. 4, pp. 4426–4434, 2016, doi: https://doi.org/10.1016/j.jece.2016.09.034
[23] M. Malakootian, M. Pourshaban-Mazandarani, H. Hossaini, and M. H. Ehrampoush, “Preparation and characterization of TiO2 incorporated 13X molecular sieves for photocatalytic removal of acetaminophen from aqueous solutions,” Process Saf. Environ. Prot., vol. 104, pp. 334–345, 2016, doi: https://doi.org/10.1016/j.psep.2016.09.018
[24] J. J. Alvear-daza, J. Sanabria, J. A. Rengifo, and H. M. Gutierrez-zapata, “Simultaneous abatement of organics (2,4-dichlorophenoxyacetic acid) and inactivation of resistant wild and laboratory bacteria strains by photo-induced processes in natural groundwater samples,” Sol. Energy, vol. 171, pp. 761–768, 2018, doi: https://doi.org/10.1016/j.solener.2018.07.026
[25] R. Arumugam et al., “Scalable novel PVDF based nanocomposite foam for direct blood contact and cardiac patch applications,” J. Mech. Behav. Biomed. Mater., vol. 88, no. June, pp. 270–280, 2018, doi: https://doi.org/10.1016/j.jmbbm.2018.08.020
[26] T. M. S. Dawoud, V. Pavitra, P. Ahmad, A. Syed, and G. Nagaraju, “Photocatalytic degradation of an organic dye using Ag doped ZrO2 nanoparticles: Milk powder facilitated eco-friendly synthesis,” J. King Saud Univ. - Sci., vol. 32, no. 3, pp. 1872–1878, 2020, doi: https://doi.org/10.1016/j.jksus.2020.01.040
[27] D. Dey et al., “Systematic study on the effect of Ag doping in shaping the magnetic property of sol-gel derived TiO2 nanoparticles,” Ceram. Int., no. March, 2020, doi: https://doi.org/10.1016/j.ceramint.2020.07.282
[28] S.-L. Chiam, Q.-Y. Soo, S.-Y. Pung, and M. Ahmadipour, “Polycrystalline TiO2 particles synthesized via one-step rapid heating method as electrons transfer intermediate for Rhodamine B removal,” Mater. Chem. Phys., vol. 257, no. January 2020, p. 123784, 2020, doi: https://doi.org/10.1016/j.matchemphys.2020.123784
[29] R. Solano, D. Patiño-Ruiz, and A. Herrera, “Preparation of modified paints with nano-structured additives and its potential applications,” Nanomater. Nanotechnol., vol. 10, pp. 1–17, 2020, doi: https://doi.org/10.1177/1847980420909188
[30] M. Algarín, M. Amaya, R. Solano, D. Patiño-Ruiz, and A. Herrera, “Synthesis of a magnetic iron oxide/zinc oxide engineered nanocatalyst for enhanced visible-light photodegradation of Cartasol brilliant violet 5BFN in aqueous solution,” Nano-Structures and Nano-Objects, vol. 26, p. 100730, 2021, doi: https://doi.org/10.1016/j.nanoso.2021.100730
[31] N. F. A. Neto, K. N. Matsui, C. A. Paskocimas, M. R. D. Bomio, and F. V Motta, “Study of the photocatalysis and increase of antimicrobial properties of Fe3+ and Pb2+ co-doped ZnO nanoparticles obtained by microwave-assisted hydrothermal method,” Mater. Sci. Semicond. Process., vol. 93, pp. 123–133, 2019, doi: https://doi.org/10.1016/j.mssp.2018.12.034
[32] R. Solano and A. Herrera, “Cypermethrin elimination using Fe-TiO2 nanoparticles supported on coconut palm spathe in a solar flat plate photoreactor,” Adv. Compos. Lett., vol. 28, pp. 1–13, 2020, doi: https://doi.org/10.1177/2633366X20906164
[33] M. Lien, C. Hieu, C. Fu, and R. Juang, “Hybridizing Ag-Doped ZnO nanoparticles with graphite as potential photocatalysts for enhanced removal of metronidazole antibiotic from water,” J. Environ. Manage., vol. 252, p. 109611, 2019, doi: https://doi.org/10.1016/j.jenvman.2019.109611
[34] V. R. Chelli, S. Chakraborty, and A. K. Golder, “Ag-doping on TiO2 using plant-based glycosidic compounds for high photonic efficiency degradative oxidation under visible light,” J. Mol. Liq., vol. 271, pp. 380–388, 2018, doi: https://doi.org/10.1016/j.molliq.2018.08.140
[35] T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, and M. Muneer, “Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light,” Mater. Chem. Phys., vol. 212, pp. 325–335, 2018, doi: https://doi.org/10.1016/j.matchemphys.2018.03.052
[36] S. P. Onkani, P. N. Diagboya, F. M. Mtunzi, M. J. Klink, B. I. Olu-owolabi, and V. Pakade, “Comparative study of the photocatalytic degradation of 2 – chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts,” J. Environ. Manage., vol. 260, p. 110145, 2020, doi: https://doi.org/10.1016/j.jenvman.2020.110145
[37] L. Mahmoudian-boroujerd, A. Karimi-jashni, and S. Nezamedin, “Optimization of rDNA degradation in recombinant Hepatitis B vaccine production plant wastewater using visible light excited Ag-doped TiO2 nanophotocatalyst,” Process Saf. Environ. Prot., vol. 122, pp. 328–338, 2019, doi: https://doi.org/10.1016/j.psep.2018.11.027
[38] L. Elleuch et al., “A new insight into highly contaminated landfill leachate treatment using Kefir grains pre-treatment combined with Ag-doped TiO2 photocatalytic process,” J. Hazard. Mater., vol. 382, p. 121119, 2020, doi: https://doi.org/10.1016/j.jhazmat.2019.121119
[39] M. Mel, M. Marques, and S. Paula, “Silver oxidation state effect on the photocatalytic properties of Ag doped TiO2 for hydrogen production under visible light,” Int. J. Hydrogen Energy, vol. 40, pp. 17308–17315, 2015, doi: https://doi.org/10.1016/j.ijhydene.2015.09.058
[40] R. A. Solano Pizarro and A. P. Herrera Barros, “Cypermethrin elimination using Fe-TiO2 nanoparticles supported on coconut palm spathe in a solar flat plate photoreactor,” Adv. Compos. Lett., vol. 28, pp. 1–13, 2020, doi: https://doi.org/10.1177/2633366X20906164
[41] C. J. Lin, W. T. Yang, C. Y. Chou, and S. Y. H. Liou, “Hollow mesoporous TiO2 microspheres for enhanced photocatalytic degradation of acetaminophen in water,” Chemosphere, vol. 152, pp. 490–495, 2016, doi: https://doi.org/10.1016/j.chemosphere.2016.03.017
[42] G. Wang, L. Xu, J. Zhang, T. Yin, and D. Han, “Enhanced photocatalytic activity of TiO2 powders (P25) via calcination treatment,” vol. 2012, pp. 1–9, 2012, doi: https://doi.org/10.1155/2012/265760
[43] A. G. El-Shamy, “An efficient removal of methylene blue dye by adsorption onto carbon dot @ zinc peroxide embedded poly vinyl alcohol (PVA/CZnO2) nano-composite: A novel Reusable adsorbent,” Polymer (Guildf)., vol. 202, p. 122565, 2020, doi: https://doi.org/10.1016/j.polymer.2020.122565
[44] F. Pellegrino et al., “Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles,” Appl. Catal. B Environ., vol. 216, pp. 80–87, 2017, doi: https://doi.org/10.1016/j.apcatb.2017.05.046
[45] T. Zhang et al., “Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light,” Chem. Eng. J., vol. 384, p. 123350, 2020, doi: https://doi.org/10.1016/j.cej.2019.123350
[46] R. Solano, G. Cerri, A. Herrera, and X. Vargas, “Cr+6 and Zn+2 Removal for Heterogeneous Photocatalysis with TiO2 in Synthetic Wastewater,” Int. J. ChemTech Res., vol. 11, no. 03, pp. 312–320, 2018, doi: https://doi.org/10.20902/IJCTR.2018.110342
[47] T. A. Kurniawan, L. Yanyan, T. Ouyang, A. B. Albadarin, and G. Walker, “BaTiO3/TiO2 composite-assisted photocatalytic degradation for removal of acetaminophen from synthetic wastewater under UV–vis irradiation,” Mater. Sci. Semicond. Process., vol. 73, pp. 42–50, 2018, doi: https://doi.org/10.1016/j.mssp.2017.06.048
[48] L. Yanyan, T. A. Kurniawan, Z. Ying, A. B. Albadarin, and G. Walker, “Enhanced photocatalytic degradation of acetaminophen from wastewater using WO3/TiO2/SiO2 composite under UV–VIS irradiation,” J. Mol. Liq., vol. 243, pp. 761–770, 2017, doi: https://doi.org/10.1016/j.molliq.2017.08.092
How to Cite
Coronell , M., Toscano-Lucas, G., Solano, R., & Herrera, A. (2022). Green Synthesis of Silver-Doped Titanium Dioxide Nanostructures for Acetaminophen Degradation Under Solar Radiation. Ingenieria Y Universidad, 26. https://doi.org/10.11144/Javeriana.iued26.gsst
Section
Bioengineering and chemical engineering