Published Dec 20, 2024



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Andrés Mauricio Paredes Rodríguez

Diego León Peña Orozco

Juan José Rojas Reyes

##plugins.themes.bootstrap3.article.details##

Abstract

Objective: The occurrence of different natural and/or anthropogenic disasters in different cities around the world have generated negative consequences on the economic conditions and food security of the population, which leads different relief agencies and local administrations to consolidate food aid distribution strategies seeking to reduce the suffering of people. This paper uses system dynamics as a tool to analyze the effectiveness of a humanitarian aid delivery prioritization model used by a city in the center of Valle del Cauca in the presence of a disaster. Materials and Methods: System dynamics model was constructed considering relationships between the different variables that make up the structure of distribution model of food kits in city under study in such a way that it can be used to make decisions that improve the food security of the population. Results and Discussion: Among the main results, the current distribution system fails to meet the expected demand for food kits, suggesting the creation of a donation and volunteer program to expand the capacity of care and improve the food security of the population. Conclusion: The methodology presented in research becomes a reference framework for the distribution of aid humanitarian for future disasters in a city

Keywords

Humanitarian Logistics, Distribution, Disasters, System Dynamics

References
[1] J. Shao, X. Wang, C. Liang, and J. Holguín-veras, “Research progress on deprivation costs in humanitarian logistics,” Int. J. Disaster Risk Reduct., p. 101343, 2019, doi: 10.1016/j.ijdrr.2019.101343.
[2] V. Cantillo, I. Serrano, L. F. Macea, and J. Holguín-Veras, “Discrete choice approach for assessing deprivation cost in humanitarian relief operations,” Socioecon. Plann. Sci., vol. 63, pp. 33–46, 2018, doi: 10.1016/j.seps.2017.06.004.
[3] V. Cantillo, L. F. Macea, and M. Jaller, “Assessing Vulnerability of Transportation Networks for Disaster Response Operations,” Networks Spat. Econ., vol. 19, no. 1, pp. 243–273, 2019, doi: 10.1007/s11067-017-9382-x.
[4] H. P. Seyed Hamid, M. Tavana, and M. Abdi, “A comprehensive framework for analyzing challenges in humanitarian supply chain management : A case study of the Iranian Red Crescent Society,” Int. J. Disaster Risk Reduct., vol. 42, no. July 2019, p. 101340, 2020, doi: 10.1016/j.ijdrr.2019.101340.
[5] S. Mary and A. K. Mishra, “Humanitarian food aid and civil conflict,” World Dev., vol. 126, 2020, doi: 10.1016/j.worlddev.2019.104713.
[6] C. Cao, Y. Liu, O. Tang, and X. Gao, “A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in sustainable humanitarian supply chains,” Int. J. Prod. Econ., vol. 235, 2021, doi: 10.1016/j.ijpe.2021.108081.
[7] M. Daneshvar, S. D. Jena, and W. Rei, “A two-stage stochastic post-disaster humanitarian supply chain network design problem,” Comput. Ind. Eng., vol. 183, 2023, doi: 10.1016/j.cie.2023.109459.
[8] A. Sadeghi, F. Aros-Vera, H. Mosadegh, and R. YounesSinaki, “Social cost-vehicle routing problem and its application to the delivery of water in post-disaster humanitarian logistics,” Transp. Res. Part E, vol. 176, 2023, doi: 10.1016/j.tre.2023.103189.
[9] S. A. Modarresi and M. R. Maleki, “Integrating pre and post-disaster activities for designing an equitable humanitarian relief supply chain,” Comput. Ind. Eng., vol. 181, no. May, p. 109342, 2023, doi: 10.1016/j.cie.2023.109342.
[10] S. L. Wang and B. Q. Sun, “Model of multi-period emergency material allocation for large-scale sudden natural disasters in humanitarian logistics: Efficiency, effectiveness and equity,” Int. J. Disaster Risk Reduct., vol. 85, 2023, doi: 10.1016/j.ijdrr.2023.103530.
[11] I. Shokr, F. Jolai, and A. Bozorgi-Amiri, “A collaborative humanitarian relief chain design for disaster response,” Comput. Ind. Eng., vol. 172, 2022, doi: 10.1016/j.cie.2022.108643.
[12] A. Melkonyan, T. Gruchmann, F. Lohmar, V. Kamath, and S. Spinler, “Sustainability assessment of last-mile logistics and distribution strategies: The case of local food networks,” Int. J. Prod. Econ., vol. 228, no. March, p. 107746, 2020, doi: 10.1016/j.ijpe.2020.107746.
[13] Z. Wang and J. Zhang, “Agent-based evaluation of humanitarian relief goods supply capability,” Int. J. Disaster Risk Reduct., vol. 36, 2019, doi: 10.1016/j.ijdrr.2019.101105.
[14] UNGDR, Estandarización de Ayuda humanitaria de Colombia. 2013.
[15] S. Tandon and T. Vishwanath, “How well is humanitarian assistance targeted in fragile environments ? Evidence from the announcement of a food emergency in Yemen ☆,” Food Policy, vol. 102, no. March, p. 102071, 2021, doi: 10.1016/j.foodpol.2021.102071.
[16] J. Aracil and F. Gordilllo, Dinámica de sistemas. 1997.
[17] S. Quijada Figueroa and S. Rosales Guerrero, “Modelos y simulaciones de políticas públicas,” Rev. Política y Estrateg., vol. 131, pp. 129–147, 2018.
[18] A. M. Paredes and A. F. Salazar, “Visión sistémica del análisis de la flexibilidad en cadenas de suministro de productos perecederos,” Sist. Telemàtica, pp. 63–86, 2014, doi: https://doi.org/10.18046/syt.v12i30.1858.
[19] A. M. Paredes Rodríguez and A. F. Salazar Ramos, “Systemic Evaluation of a Policy of Volume Flexibility in a Papaya Distribution Supply Chain,” Rev. EIA, vol. 14, no. 27, pp. 43–62, 2018, doi: https://doi.org/10.24050/reia.v14i27.865.
[20] J. A. Castrillón Gómez and J. Valencia Calvo, “Propuesta de modelo en dinámica de sistemas para toma de decisiones en selección de proyectos verdes,” Rev. Mutis, vol. 8, no. 2, pp. 84–94, 2018, doi: 10.21789/22561498.1407.
[21] J. K. Buor, “Understanding the socio-economic and environmental impacts of Ghana’s change in economic status on the upstream cocoa supply chain,” Manag. Environ. Qual. An Int. J., vol. 33, no. 6, pp. 1379–1403, 2022, doi: 10.1108/MEQ-11-2021-0261.
[22] N. Giedelmann-L, W. J. Guerrero, and E. L. Solano-Charris, “System dynamics approach for food inventory policy assessment in a humanitarian supply chain,” Int. J. Disaster Risk Reduct., vol. 81, no. September 2022, 2022, doi: 10.1016/j.ijdrr.2022.103286.
[23] V. Henao-Cespedes, Y. A. Garcés-Gómez, S. Ruggeri, and T. M. Henao-Cespedes, “Relationship analysis between the spread of COVID-19 and the multidimensional poverty index in the city of Manizales, Colombia,” Egypt. J. Remote Sens. Sp. Sci., no. xxxx, 2021, doi: 10.1016/j.ejrs.2021.04.002.
[24] Z. Naji-azimi, J. Renaud, A. Ruiz, and M. Salari, “A covering tour approach to the location of satellite distribution centers to supply humanitarian aid,” Eur. J. Oper. Res., vol. 222, no. 3, pp. 596–605, 2012, doi: 10.1016/j.ejor.2012.05.001.
[25] X. Taouktsis and C. Zikopoulos, “A decision-making tool for the determination of the distribution center location in a humanitarian logistics network,” Expert Syst. Appl., vol. 238, 2024, doi: 10.1016/j.eswa.2023.122010.
How to Cite
Paredes Rodríguez, A. M., Peña Orozco, D. L., & Rojas Reyes, J. J. (2024). Dynamic analysis of a humanitarian aid delivery model in disaster situations. Ingeniería Y Universidad, 28. https://doi.org/10.11144/Javeriana.iued28.daha
Section
Industrial and systems engineering