Numerical simulation of adobe wallettes under compression and diagonal tension with and without reinforcement of spaced Guadua angustifolia Kunth strips
HTML Full Text
PDF
XML

Keywords

Adobe
Guadua Strips
Failure Mechanism
Finite Element Method (FEM)

How to Cite

Numerical simulation of adobe wallettes under compression and diagonal tension with and without reinforcement of spaced Guadua angustifolia Kunth strips. (2025). Ingenieria Y Universidad, 29. https://doi.org/10.11144/Javeriana.iued29.nsaw
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

Based on results of compression and diagonal tension experimental tests of unreinforced adobe (raw earth units) wallettes and those reinforced with strips of Guadua angustifolia Kunth, a numerical simulation was carried out through the finite element method, FEM, using the microplane damage model. Analysis varying the reinforcement inclinations of the Guadua strips leads to the fact that the optimal configuration depends on construction criteria, as any reinforcement pattern improves the mechanical performance of an unreinforced wallette under the evaluated load conditions. In terms of construction effectiveness, the 90° configuration stands out as the most suitable.

HTML Full Text
PDF
XML

[1] F. Parisi, D. Asprone, L. Fenu, and A. Prota, “Experimental characterization of Italian composite adobe bricks reinforced with straw fibers,” Compos Struct, vol. 122, pp. 300–307, Apr. 2015, doi: 10.1016/j.compstruct.2014.11.060.

[2] M. Costi de Castrillo, M. Philokyprou, and I. Ioannou, “Comparison of adobes from pre-history to-date,” J Archaeol Sci Rep, vol. 12, pp. 437–448, Apr. 2017, doi: 10.1016/j.jasrep.2017.02.009.

[3] I. Onyegiri and B. U. Iwuagwu, “Traditional Building Materials as a Sustainable Resource and Material for Low Cost Housing in Nigeria: Advantages, Challenges and the Way Forward,” International Journal of Research in Chemical, Metallurgical and Civil Engineering, vol. 3, no. 2, Aug. 2016, doi: 10.15242/IJRCMCE.U0716311.

[4] O. A. P. Olukoya and S. Kurt, “Environmental impacts of adobe as a building material: The north cyprus traditional building case,” Case Studies in Construction Materials, vol. 4, pp. 32–41, Jun. 2016, doi: 10.1016/j.cscm.2015.12.001.

[5] D. Daudon, Y. Sieffert, O. Albarracín, L. G. Libardi, and G. Navarta, “Adobe Construction Modeling by Discrete Element Method: First Methodological Steps,” Procedia Economics and Finance, vol. 18, pp. 247–254, 2014, doi: 10.1016/S2212-5671(14)00937-X.

[6] V. Giamundo, G. Lignola, A. Prota, and G. Manfredi, “Nonlinear Analyses of Adobe Masonry Walls Reinforced with Fiberglass Mesh,” Polymers (Basel), vol. 6, no. 2, pp. 464–478, Feb. 2014, doi: 10.3390/polym6020464.

[7] F. Pacheco-Torgal and S. Jalali, “Earth construction: Lessons from the past for future eco-efficient construction,” Constr Build Mater, vol. 29, pp. 512–519, Apr. 2012, doi: 10.1016/j.conbuildmat.2011.10.054.

[8] M. Espitia et al., “Mechanical and physical characterization of Guadua angustifolia ‘Kunth’ fibers from Colombia,” Revista UIS Ingenierías, vol. 17, no. 2, pp. 33–40, Mar. 2018, doi: 10.18273/revuin. v17n2-2018003.

[9] D. Silveira, H. Varum, and A. Costa, “Influence of the testing procedures in the mechanical characterization of adobe bricks,” Constr Build Mater, vol. 40, pp. 719–728, Mar. 2013, doi: 10.1016/j.conbuildmat.2012.11.058.

[10] M. Giaretton, D. Dizhur, and H. Morris, “Material characterisation of heavy-weight and lightweight adobe brick walls and in-plane strengthening techniques,” Constr Build Mater, vol. 310, p. 125309, Dec. 2021, doi: 10.1016/j.conbuildmat.2021.125309.

[11] D. Silveira, H. Varum, A. Costa, and J. Carvalho, “Mechanical Properties and Behavior of Traditional Adobe Wall Panels of the Aveiro District,” Journal of Materials in Civil Engineering, vol. 27, no. 9, Sep. 2015, doi: 10.1061/(ASCE)MT.1943-5533.0001194.

[12] A. Caporale, F. Parisi, D. Asprone, R. Luciano, and A. Prota, “Comparative micromechanical assessment of adobe and clay brick masonry assemblages based on experimental data sets,” Compos Struct, vol. 120, pp. 208–220, Feb. 2015, doi: 10.1016/j.compstruct.2014.09.046.

[13] G. Araya-Letelier et al., “Experimental evaluation of adobe mixtures reinforced with jute fibers,” Constr Build Mater, vol. 276, p. 122127, Mar. 2021, doi: 10.1016/j.conbuildmat.2020.122127.

[14] M. C. M. Parlato, M. Cuomo, and S. M. C. Porto, “Natural fibers reinforcement for earthen building components: Mechanical performances of a low quality sheep wool (‘Valle del Belice’ sheep),” Constr Build Mater, vol. 326, p. 126855, Apr. 2022, doi: 10.1016/j.conbuildmat.2022.126855.

[15] I. M. G. Bertelsen, L. J. Belmonte, G. Fischer, and L. M. Ottosen, “Influence of synthetic waste fibres on drying shrinkage cracking and mechanical properties of adobe materials,” Constr Build Mater, vol. 286, p. 122738, Jun. 2021, doi: 10.1016/j.conbuildmat.2021.122738.

[16] E. Olacia, A. L. Pisello, V. Chiodo, S. Maisano, A. Frazzica, and L. F. Cabeza, “Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization,” Constr Build Mater, vol. 239, p. 117669, Apr. 2020, doi: 10.1016/j.conbuildmat.2019.117669.

[17] L. E. Yamín Lacouture, C. Phillips Bernal, J. C. Reyes Ortiz, and D. Ruiz Valencia, “Estudios de vulnerabilidad sísmica, rehabilitación y refuerzo de casas en adobe y tapia pisada,” Apuntes: Revista de estudios sobre patrimonio cultural, vol. 20, no. 2, jul. 2007, [Online]. Available: https://revistas.javeriana.edu.co/index.php/revApuntesArq/article/view/8984

[18] C. J. Whitman, “Heritage Earth Construction and Hygrothermal Comfort: The Challenge of Rebuilding in Central Chile,” Key Eng Mater, vol. 600, pp. 186–195, Mar. 2014, doi: 10.4028/www.scientific.net/KEM.600.186.

[19] J. C. Reyes et al., “Seismic retrofitting of existing earthen structures using steel plates,” Constr Build Mater, vol. 230, p. 117039, Jan. 2020, doi: 10.1016/j.conbuildmat.2019.117039.

[20] C. Flores Bastidas, C. L. Flores Bastidas, J. I. G. Tsutsumi, and C. P. Takeuchi, “Approach to the Load Resistance in Two Kinds of Bamboo Reinforced Concrete Slab,” Adv Mat Res, vol. 261 263, pp. 459–463, May 2011, doi: 10.4028/www.scientific.net/AMR.261-263.459.

[21] J. Forero, “Caracterización mecánica de muretes de adobe reforzados con esterilla de guadua,” Universidad Nacional de Colombia, Bogotá, 2022.

[22] N. Quinn, D. D’Ayala, and T. Descamps, “Structural Characterization and Numerical Modelling of Historic Quincha Walls,” International Journal of Architectural Heritage, p. 15583058.2015.1113337, Dec. 2015, doi: 10.1080/15583058.2015.1113337.

[23] J. M. Fages, N. Tarque, J. D. Rodríguez-Mariscal, and M. Solís, “Calibration of a total strain crack model for adobe masonry based on compression and diagonal compression tests,” Constr Build Mater, vol. 352, Oct. 2022, doi: 10.1016/j.conbuildmat.2022.128965.

[24] I. Zreid and M. Kaliske, “A gradient enhanced plasticity–damage microplane model for concrete,” Comput Mech, vol. 62, no. 5, pp. 1239–1257, Nov. 2018, doi: 10.1007/s00466-018-1561-1.

[25] W. B. Krätzig and R. Pölling, “An elasto-plastic damage model for reinforced concrete with minimum number of material parameters,” Comput Struct, vol. 82, no. 15–16, pp. 1201–1215, Jun. 2004, doi: 10.1016/j.compstruc.2004.03.002.

[26] F. Gatuingt and G. Pijaudier-Cabot, “Coupled damage and plasticity modelling in transient dynamic analysis of concrete,” Int J Numer Anal Methods Geomech, vol. 26, no. 1, pp. 1–24, Jan. 2002, doi: 10.1002/nag.. 188.

[27] J. Lee and G. L. Fenves, “Plastic-Damage Model for Cyclic Loading of Concrete Structures,” J Eng Mech, vol. 124, no. 8, pp. 892–900, Aug. 1998, doi: 10.1061/(ASCE)0733-9399(1998)124:8(892).

[28] B. Lei, T. Qi, Y. Li, Z. Jin, and W. Qian, “An enhanced damaged plasticity model for concrete under cyclic and monotonic triaxial compression,” European Journal of Mechanics - A/Solids, vol. 100, p. 104999, Jul. 2023, doi: 10.1016/j.euromechsol.2023.104999.

[29] A. Cornejo, S. Jiménez, L. G. Barbu, S. Oller, and E. Oñate, “A unified non-linear energy dissipation-based plastic-damage model for cyclic loading,” Comput Methods Appl Mech Eng, vol. 400, p. 115543, Oct. 2022, doi: 10.1016/j.cma.2022.115543.

[30] R. Bakhti, B. Benahmed, A. Laib, and M. T. Alfach, “New approach for computing damage parameters evolution in plastic damage model for concrete,” Case Studies in Construction Materials, vol. 16, p. e00834, Jun. 2022, doi: 10.1016/j.cscm.2021.e00834.

[31] S. Oller, E. Oñate, J. Oliver, and J. Lubliner, “Finite element nonlinear analysis of concrete structures using a ‘plastic-damage model,’” Eng Fract Mech, vol. 35, no. 1–3, pp. 219–231, Jan. 1990, doi: 10.1016/0013-7944(90)90200-Z.

[32] I. C. Mihai, A. D. Jefferson, and P. Lyons, “A plastic-damage constitutive model for the finite element analysis of fibre reinforced concrete,” Eng Fract Mech, vol. 159, pp. 35–62, Jul. 2016, doi: 10.1016/j.engfracmech.2015.12.035.

[33] T. Yu, J. G. Teng, Y. L. Wong, and S. L. Dong, “Finite element modeling of confined concrete-II: Plastic-damage model,” Eng Struct, vol. 32, no. 3, pp. 680–691, Mar. 2010, doi: 10.1016/j.engstruct.2009.11.013.

[34] Z. P. Bažant and P. G. Gambarova, “Crack Shear in Concrete: Crack Band Microplane Model,” Journal of Structural Engineering, vol. 110, no. 9, pp. 2015–2035, Sep. 1984, doi: 10.1061/(ASCE)0733-9445(1984)110:9(2015).

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Jonathan Danilo Perilla Novoa, Juan Esteban Muñoz Rodríguez, Maritzabel Molina Herrera, Caori Patricia Takeuchi Tam