Thermodynamic analysis in the obtention of Calcium Phosphates from Phosphate Rock
HTML Full Text
XML
PDF

Keywords

Calcium phosphates
hydroxyapatite
monetite
phosphate rock
thermodynamics

How to Cite

Thermodynamic analysis in the obtention of Calcium Phosphates from Phosphate Rock. (2025). Ingenieria Y Universidad, 29. https://doi.org/10.11144/Javeriana.iued29.taoc
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

This paper deals with the thermodynamics of hydrometallurgical processes used in phosphate rock treatment. The stability of precipitated phases at different pH levels and molar concentrations in solutions containing phosphorus and calcium ions is analysed. The thermodynamic analysis was carried out by generating Pourbaix diagrams, species distribution diagrams and speciation diagrams using the Hydramedusa software. In addition, a XRD and SEM characterization of the different types of calcium phosphate found was performed to corroborate the thermodynamic results at different levels of pH and ion concentration. From this study, it was determined that hydroxyapatite and monetite can be obtained by hydrometallurgical processes with variations in pH and ionic concentrations of PO43- and Ca+, directly from the acid leach of phosphate rock.

HTML Full Text
XML
PDF

Heaney RP. Phosphorus. In: Erdman JW, Macdonald IA, Zeisel SH, eds. Present Knowledge in Nutrition. 10th ed. Washington, DC: Wiley-Blackwell; 2012:447-58.

Zapata, F.; Roy, R. N. 2007. Utilización de las Rocas Fosfóricas para una Agricultura Sostenible. Boletín FAO No. 13. OIEA-FAO. Roma, Italia. 94 p.

Minerals Education Coalition, SME Foundation, https://mineralseducationcoalition.org/minerals-database/phosphate-rock/

Abioye O. Fayiga and O.C. Nwoke. 2016. Phosphate rock: origin, importance, environmental impacts, and future roles. Environmental Reviews. 24(4): 403-415. https://doi.org/10.1139/er-2016-0003

Mineral Commodity Summaries 2024. Obtenido de https://pubs.usgs.gov/publication/mcs2024

Sánchez Guevara, C. (2024, March 11). LA PRODUCCIÓN DE ROCA FOSFÓRICA EN EL MUNDO. https://alimentosypoder.com/2024/03/11/la-produccion-de-roca-fosforica-en-el-mundo-2023/

Agencia Nacional de Minería – ANM. Boletín estadístico informativo, minería en cifras. Enero de 2024. Sitio web: https://mineriaencolombia.anm.gov.co/sites/default/files/docupromocion/Bolet%C3%ADn%20Miner%C3%ADa%20en%20Cifras%20-%20enero%202024%20%283%29.pdf

C. Avşar & A.O. Gezerman, “An evaluation of phosphogypsum (PG)-derived nanohydroxyapatite (HAP) synthesis methods and waste management as a phosphorus source in the agricultural industry,” Medziagotyra, vol. 29, no. 2, pp. 247–254, 2023. https://doi.org/10.5755/j02.ms.31695

I. Bouchkira, A.M. Latifi, L. Khamar & S. Benjelloun, “Modeling and multi-objective optimization of the digestion tank of an industrial process for manufacturing phosphoric acid by wet process,” Computers and Chemical Engineering, vol. 156, 2022. https://doi.org/10.1016/j.compchemeng.2021.107536

Ryszko, U.; Rusek, P.; Kołodyńska, D. Quality of Phosphate Rocks from Various Deposits Used in Wet Phosphoric Acid and P-Fertilizer Production. Materials 2023, 16, 793. https://doi.org/10.3390/ma16020793

Patrick Zhang, Comprehensive Recovery and Sustainable Development of Phosphate Resources, Procedia Engineering, Volume 83, 2014, Pages 37-51, https://doi.org/10.1016/j.proeng.2014.09.010.

N.M. Espinel Pérez, “Synthesis of thermophosphate fertilizers by a plasma torch,” Organic Fertilizers - New Advances and Applications, Mar. 28, 2023. https://doi:10.5772/intechopen.1001352

Benataya, K.; Lakrat, M.; Hammani, O.; Aaddouz, M.; Ait Yassine, Y.; Abuelizz, H.A.; Zarrouk, A.; Karrouchi, K.; Mejdoubi, E. Synthesis of High-Purity Hydroxyapatite and Phosphoric Acid Derived from Moroccan Natural Phosphate Rocks by Minimizing Cation Content Using Dissolution–Precipitation Technique. Molecules 2024, 29, 3854. https://doi.org/10.3390/molecules29163854

Sainz Diaz, C. I., Villacampa, A., & Otálora, F. (2004). Crystallographic properties of the calcium phosphate mineral, brushite, by means of first principles calculations. American Mineralogist, 89, 307–313. https://doi.org/10.2138/am-2004-2-308

Nath, S., Biswas, K., & Basu, B. (2008). Phase stability and microstructure development in hydroxyapatite-mullite system. Scripta Materialia, 58(12), 1054–1057. https://doi.org/10.1016/j.scriptamat.2008.01.045

Aminzare, M., Eskandari, A., Baroonian, M. H., Berenov, A., Razavi Hesabi, Z., Taheri, M., & Sadrnezhaad, S. K. (2013). Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties. In Ceramics International (Vol. 39, Issue 3, pp. 2197–2206). https://doi.org/10.1016/j.ceramint.2012.09.023

Sánchez-Enríquez, J., & Reyes-Gasga, J. (2013). Obtaining Ca(H2PO4)2·H 2O, monocalcium phosphate monohydrate, via monetite from brushite by using sonication. Ultrasonics Sonochemistry, 20(3), 948–954. https://doi.org/10.1016/j.ultsonch.2012.10.019

Bakher, Z., & Kaddami, M. (2018). Thermodynamic equilibrium in the system H2O+P2O5+CaCO3 at 25 and 70 °C: Application for synthesis of calcium phosphate products based on calcium carbonate decomposition. Fluid Phase Equilibria, 456, 46–56. https://doi.org/10.1016/j.fluid.2017.10.005

Döbelin, N., Maazouz, Y., Heuberger, R., Bohner, M., Armstrong, A. A., Wagoner Johnson, A. J., & Wanner, C. (2020). A thermodynamic approach to surface modification of calcium phosphate implants by phosphate evaporation and condensation. Journal of the European Ceramic Society, 40(15), 6095–6106. https://doi.org/10.1016/j.jeurceramsoc.2020.07.028

Elbashir, S., Broström, M., & Skoglund, N. (2024). Thermodynamic modelling assisted three-stage solid state synthesis of high purity β-Ca3(PO4)2. Materials and Design, 238. https://doi.org/10.1016/j.matdes.2024.112679

Jelena Hasikovaa*, Aleksander Sokolov, Vitaly Titov, Arnis Dirba. “SYMPHOS 2013”, 2nd International Symposium on Innovation and Technology in the Phosphate Industry. On-Line XRF Analysis of Phosphate Materials at Various Stages of Processing. Procedia Engineering 83 (2014) 455 – 461. http://doi.org/10.1016/j.proeng.2014.09.078

Madian Jamil Safi,1∗ M. Bhagwanth Rao,1 K. Surya Prakash Rao2 and Pradip K. Govil3. X-RAY SPECTROMETRY. X-Ray Spectrom. 2006; 35: 154–158. Published online 7 April 2006 in Wiley InterScience (www.interscience.wiley.com).Chemical analysis of phosphate rock using different methods—advantages and disadvantages. https://doi.org/10.1002/xrs.886.

U. Cevik, H. Baltas, A. Tabak, N. Damla, Radiological and chemical assessment of phosphate rocks in some countries, Journal of Hazardous Materials, Volume 182, Issues 1–3, 2010, Pages 531-535, ISSN 0304-3894, https://doi.org/10.1016/j.jhazmat.2010.06.064.

Aboudzadeh, N., Dehghanian, C., & Shokrgozar, M. A. (2019). Effect of electrodeposition parameters and substrate on morphology of Si-HA coating. Surface and Coatings Technology, 375, 341–351. https://doi.org/10.1016/j.surfcoat.2019.07.016

Pandayil JT, Boetti NG, Janner D. Advancements in Biomedical Applications of Calcium Phosphate Glass and Glass-Based Devices—A Review. Journal of Functional Biomaterials. 2024; 15(3):79. https://doi.org/10.3390/jfb15030079

Maria Canillas, Pilar Pena, Antonio H. de Aza, Miguel A. Rodríguez. Calcium phosphates for biomedical applications. Vol. 56. Issue 3. Pages 91-112 (May - June 2017). DOI: https://doi.org/10.1016/j.bsecv.2017.05.001

Wouter Habraken, Pamela Habibovic, Matthias Epple, Marc Bohner, Calcium phosphates in biomedical applications: materials for the future?, Materials Today, Volume 19, Issue 2, 2016, Pages 69-87, https://doi.org/10.1016/j.mattod.2015.10.008

Amandine Magnaudeix. Calcium phosphate bioceramics: From cell behavior to chemical-physical properties. Front. Biomater. Sci., 29 August 2022. Sec. Bio-interactions and Bio-compatibility. Volume 1 - 2022 | https://doi.org/10.3389/fbiom.2022.942104

Nathan W. Kucko, Ralf-Peter Herber, Sander C.G. Leeuwenburgh, John A. Jansen. Chapter 34 - Calcium Phosphate Bioceramics and Cements, Editor(s): Anthony Atala, Robert Lanza, Antonios G. Mikos, Robert Nerem, Principles of Regenerative Medicine (Third Edition), Academic Press, 2019, Pages 591-611, https://doi.org/10.1016/B978-0-12-809880-6.00034-5

Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials. 2017; 10(4):334. https://doi.org/10.3390/ma10040334

Bojan Jokić, Miodrag Mitrić, Velimir Radmilović, Sasa Drmanić, Rada Petrović, Djordje Janaćković, Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by a hydrothermal method, Ceramics International, Volume 37, Issue 1, 2011, Pages 167-173, https://doi.org/10.1016/j.ceramint.2010.08.032

Shanza Rauf Khan, Sarmed Ali, Ghulam Zahra, Saba Jamil, Muhammad Ramzan Saeed Ashraf Janjua, Synthesis of monetite micro particles from egg shell waste and study of its environmental applications: Fuel additive and catalyst, Chemical Physics Letters, Volume 755, 2020, 137804, https://doi.org/10.1016/j.cplett.2020.137804.

M.H. Prado Da Silva, J.H.C. Lima, G.A. Soares, C.N. Elias, M.C. de Andrade, S.M. Best, I.R. Gibson, Transformation of monetite to hydroxyapatite in bioactive coatings on titanium, Surface and Coatings Technology, Volume 137, Issues 2–3, 2001, Pages 270-276, https://doi.org/10.1016/S0257-8972(00)01125-7.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Sandra Diaz, Nestor Ricardo Rojas Reyes, Gloria Soto, Adrian Gomez