Published Jul 30, 2015



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


Anié Bermudez-Peña, MSc

José Alejandro Lugo-García, MSc

Pedro Yobanis Piñero-Pérez, PhD

##plugins.themes.bootstrap3.article.details##

Abstract

In this article, a set of key management indicators related to performance of execution, planning, costs, effectiveness, human resources, data quality, and logistics, are considered for the evaluation of a project. Several automated tolos support project managers in this task. However, these tools are still insufficient to accurately assess projects in organizations with continuous improvement management styles and with presence of uncertainty in the primary data. An alternative solution is the introduction of soft computing techniques, allowing gains in robustness, efficiency, and adaptability in these tools. This paper presents an adaptivenetwork- based fuzzy inference system (ANFIS) to optimize projects evaluation made with the Xedro-GESPRO tool (manufacturer: Universidad de las Ciencias informáticas, [20], versión: 14.05, Cuba). The implementation of the system allowed the adjustment of fuzzy sets parameters in the inference rules for the assessment of projects, based on the automatic calculation of indicators. The contribution of this research lies in the application of ANFIS soft computing technique to optimize the evaluation of projects integrated with the management tool. The results contribute to the improvement of existing decision-making support tools into organizations towards project-oriented production.

Keywords

ANFIS, evaluación de proyectos, sistema de inferencia borroso, soft computing, toma de decisionesANFIS, decision-making, fuzzy inference system, project evaluation, soft computing

References
[1] Project Management Institute (PMI), A guide to the Project Management Body of Knowledge (PMBOK). Pennsylvania, 2013.
[2] R. Delgado, La dirección integrada de proyecto como centro del sistema de control de gestión en el Ministerio del Poder Popular para la Comunicación y la Información, Caracas, Venezuela. La Habana: Centro Nacional de Derecho de Autor (Cenda), 2011.
[3] I. Pérez et al., “Modelo para el aprendizaje automático: aplicación en la Dirección Integrada de Proyectos”, in II Taller Internacional de Ciencias Computacionales e Informáticas, Informática 2013, La Habana, 2013.
[4] D.B. Stang, IT project & portfolio management magic quadrant. Stanford: Gartner, 2013.
[5] P.Y. Piñero, “Un modelo para el aprendizaje y la clasificación automática basado en técnicas de soft-computing”, Tesis doctoral, Dpto. Ciencias de la Computación, Universidad Central “Marta Abreu de Las Villas”, 2005.
[6] R.E. Bello and J.L. Verdegay, “Los conjuntos aproximados en el contexto de la soft computing”, Revista Cubana de Ciencias Informáticas, vol. 4, no. 1-2, pp. 5-24, 2010.
[7] L.A. Zadeh, “Fuzzy logic, neural networks and soft computing”, Fuzzy Logic, Neural Networks and Soft Computing, Communications of the ACM, pp. 77-84, 1994.
[8] A. Kelemen, Y. Liang, and S. Franklin, “A comparative study of different machine learning approaches for decision making”, Recent Advances in Simulation, Computational Methods and Soft Computing, pp. 181-186, 2002.
[9] M. Sugeno, Fuzzy measures and fuzzy integrals: A survey, fuzzy automata and decision processes. New York: Elsevier, 1977.
[10] Mathworks, Matlab, Fuzzy Logic Toolbox, User’s Guide. Massachusetts: The Mathworks, 2014 [online]. Available: http://www.mathworks.com. Accessed on: March 7, 2014.
[11] Heracles, “Modelado dinámico y aprendizaje automático aplicado a la gestión de proyectos software”, Revista de Procesos y Métricas de las Tecnologías de la Información, vol. 1, no. 3, pp. 21-28, 2004.
[12] F. Dweiri and M. Kablan, “Using fuzzy decision making for the evaluation of the project management internal efficiency”, Decision Support Systems, vol. 42, no. 2, pp. 712-726, 2006.
[13] M. Bath, “Project classification using soft computing: ACT”, in Int. Conf. on Advances in Computing, Control & Telecommunication Technologies, 2010, pp. 537-539.
[14] H. Gao, “A fuzzy-ANP approach to project management performance evaluation índices system”, in Int. Conf. on Logistics Systems and Intelligent Management, IEEE, 2010, pp. 273-277.
[15] A. Certa, M. Enea, and A. Giallanza, “A synthetic measure for the assessment of the project performance”, in Business performance measurement and management. Berlin: Springer-Verlag, 2010, pp. 167-180.
[16] A. Gajate, Modelado y control neuro-borroso de sistemas complejos: aplicación a procesos de mecanizado de alto rendimiento. Salamanca: Universidad de Salamanca, 2011.
[17] K.M. Mewada, A. Sinhal, and B. Verma, “Adaptive Neuro-Fuzzy Inference System (ANFIS) based software evaluation”, IJCSI International Journal of Computer Science, vol. 10, no. 1, pp. 244-250, 2013.
[18] Y. Liu et al., “Research on evaluation of project management maturity model based on BP neural network”, Advances in Information Sciences and Service Sciences (AISS), vol. 5, no. 2, pp. 693-701, 2013.
[19] A. Govindarajan, “A novel framework for evaluating the software project management efficiency–an artificial intelligence approach”, TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 12, no. 9, pp. 7054-7058, 2014.
[20] P.Y. Piñero et al., “GESPRO: paquete para la gestión de proyectos”, Revista Nueva Empresa, vol. 9, no. 1, pp. 45-53, 2013.
[21] Software Engineering Institute (SEI), CMMI® for Development, V. 1.3: Improving processes for developing better products and services. Technical Report. CMU/SEI-2010-TR-033, 2010.
[22] J.A. Lugo et al., “Control de la ejecución de proyectos basado en indicadores y lógica borrosa”, Iberoamerican Journal of Project Management, vol. 4, no. 1, pp. 15-35, 2013.
[23] A. Bermudez et al., “Sistema neuro-borroso de apoyo al control de la ejecución de proyectos”, Revista Cubana de Ingeniería, vol. 5, no. 2, pp. 41-51, 2014.
[24] J. A. Lugo et al., “Control automatizado de proyectos en Cuba: un acercamiento”, in 1ra. Conf. Científica Internacional UCIENCIA 2014, Universidad de las Ciencias Informáticas, La Habana, Cuba, 2014.
[25] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985.
[26] J.-S.R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference Systems”, IEEE TransactionSystems Man & Cybernetics, vol. 23, no. 1, pp. 665-685, 1993.
How to Cite
Bermudez-Peña, A., Lugo-García, J. A., & Piñero-Pérez, P. Y. (2015). An adaptive-network-based fuzzy inference system for project evaluation. Ingenieria Y Universidad, 19(2), 53 - 67. https://doi.org/10.11144/Javeriana.iyu19-2.sdib
Section
Articles