Published Oct 27, 2010


Google Scholar
Search GoogleScholar

Carlos Julio Camacho-López, BSc

Diego Alexander Garzón-Alvarado, MSc



This paper presents a method to analyze elastic deformations and stiffness in two-dimensional structures with different assembly configurations among their elements. Initially, the optimal structure is obtained through topology optimization, and then a method to analyze different types of connections (hinge, flexible and rigid connections) in structural components is developed. Next, two widely documented examples are developed and validated. The versatility of the method and its functionality during both the design process and the selection of the best assembly option are determined. This work contributes to analyzing structures with different interconnection setups among their elements. Existing work is complemented through both the integration of topological design and the choice of the best setup features for a number of cases where assembly and design requirements are related.


Couplings, flexible, structural optimization, structural designAcoplamientos flexibles, optimización estructural, diseño de estructuras

BENDSØE, M. P. y SIGMUND, O. Topology optimization: theory, methods, and applications. Berlin: Springer, 2003.
BOOKER, J. D.; SWIFT, K. G. y BROWN, N. J. Designing for assembly quality: strategies, guidelines and techniques. Journal of Engineering Design, 2005, vol. 16, núm. 3, pp. 279-295.
BOOTHROYD, G. Product design for manufacture and assembly. 2a ed. New York: Marcel Dekker Incorporated, 2001.
CETIN, O. L. Decomposition-based assembly synthesis of family of structures. Tesis de Doctorado. University of Michigan, Department of Mechanical Engineering, 2003.
— y SAITOU, K. Decomposition-based assembly synthesis for maximum structural strength and modularity. Journal of Mechanical Design, 2004, vol. 126, núm. 2, pp. 244-253.
—. Decomposition-based assembly synthesis of multiple estructures for minimum manufacturing cost. Journal of Mechanical Design, 2005, vol. 127, núm. 4, pp. 572-579.
CHAN, S. L. y CHUI, P. P. T. Non-linear static and cyclic analysis of steel frames with semi-rigid connections. New York: Elsevier, 2000.
CHANG, D. C. Effects of flexible connections on body structural response. s. l.: SAE Transactions, 1974.
DHILLON, B. y O’MALLEY, J. Interactive design of semirigid steel frames. Journal of Structural Engineering, 1999, vol. 125, núm. 5, pp. 556-564.
HAYALIOGLU, M. y DEGERTEKIN, S. Minimum cost design of steel frames with semirigid connections and column bases via genetic optimization. Computers & Structures, 2005, vol. 83, núm. 21-22, pp. 1849-1863.
HUGHES, T. J. R. The finite element method: linear and dynamic element analysis. s. l.: Dover, 2000.
LEE, K. y NICOLAIDIS, E. A two dimensional model for joints in vehicle structures. Computer & Structures, 1992, vol. 45, núm. 4, pp. 775-784.
LYU, N. y SAITOU, K. Decomposition-based assembly synthesis of a three dimensional bodyin-white model for structural stiffness. Journal of Mechanical Design, 2005a, vol. 127, núm. 1, pp. 34-48.
—. Decomposition-based assembly synthesis for structural stiffness. Journal of Mechanical Design, 2003, vol. 125, pp. 452-463.
—. Decomposition-based assembly synthesis of space frame structures using joint library. Journal of Mechanical Design, 2006, vol. 128, núm. 1, pp. 57-65.
—. Topology optimization of multicomponent beam structure via decomposition-based assembly synthesis. Journal of Mechanical Design, 2005b, vol. 127, núm. 2, pp. 170-183.
LYU, N.; LEE, B. y SAITOU, K. Assembly synthesis for stiffness, dimensional adjustability and manufacturability. The Fourth International Conference on Engineering Computational Technology, Lisboa, Portugal, 7-9 de septiembre de 2004.
PAVLOVÇIÇ, L. et al. Cost function analysis in the structural optimization of steel frame. Structural and Multidisciplinary Optimization, 2004, vol. 28, núm. 4, pp. 286-295.
RUSS, J. C. The image processing handbook. 5a ed. Boca Ratón: CRC Press, 2007.
SIGMUND, O. A 99 line topology optimization code written in MATLAB. Structural and Multidisciplinary Optimization, 2001, vol. 21, núm. 2, pp. 120-127.
TAKEZAWA, A. et al. Structural optimization based on topology optimization techniques using frame elements considering cross-sectional properties. Structural and Multidisciplinary Optimization, 2006, vol. 34, núm. 1, pp. 41-60.
TOVAR, A. et al. Optimización topológica con restricciones de masa, desplazamiento y esfuerzo utilizando el método de los autómatas celulares híbridos. Tercer Congreso Internacional de Ingeniería Mecánica y Primero de Ingeniería Mecatrónica, Bogotá, Colombia, 20-22 de septiembre de 2006a.
—. Topology optimization using a hybrid cellular automaton method with local control rules. Journal of Mechanical Design, 2006b, vol. 128, núm. 6, pp. 1205- 1216.
YETIS, A. y SAITOU, K. Decomposition-based assembly synthesis based on structural considerations. Journal of Mechanical Design, 2002, vol. 124, núm. 4, pp. 593-601.
ZUO, K. T. et al. Manufacturing-and machining-based topology optimization. International Journal of advanced Manufacturing Technology, 2006, vol. 27, núm. 5-6, pp. 531-536.
How to Cite
Camacho-López, C. J., & Garzón-Alvarado, D. A. (2010). Calculation of elastic deformations in optimal two-dimensional structures for a number of assembly cases. Ingenieria Y Universidad, 14(1).

Most read articles by the same author(s)