Published Nov 2, 2021



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Maria Camila Zapata Zúñiga https://orcid.org/0000-0002-5126-4802

Miguel Angel Parra-Pérez https://orcid.org/0000-0001-6581-9437

Johan Alexander Álvarez-Berrio, MSc https://orcid.org/0000-0001-7805-7128

Nidia Isabel Molina-Gómez, MSc https://orcid.org/0000-0003-4485-262X

##plugins.themes.bootstrap3.article.details##

Abstract

This study aimed to evaluate the efficiency of technologies for removing antibiotics, antibiotic-resistant bacteria and their antibiotic resistance genes, and the countries where they have been developed. For this purpose, was conducted a systematic review to identify the tertiary treatments to remove the above-mentioned pollutants. The ScienceDirect and Scopus databases were used as sources of information, taking into account only experimental research from 2006 to 2019 and technologies with removal rates higher than 70% to the information analyses. From the analysis of 9 technologies evaluated, in a set of 47 investigations, photo-Fenton, and electrochemical treatments were found to be the most efficient in the removal of antibiotics; gamma radiation and photocatalysis with TiO2 and UV revealed better results in the removal of resistant microbial agents and their resistance genes, with efficiencies of 99.9%. As one of the largest producers and consumers of antibiotics, China appears to be the country with the most scientific research on the area. The importance of innovation in wastewater treatment processes to achieve better results in the remotion of antibiotics, antibiotic-resistant bacteria, and their resistance genes is highlighted, given the effects on the aquatic ecosystems and public health.

Keywords

Antibiotics, sewage treatment, antibiotic resistance bacteria, antibiotic resistance genesAntibióticos, tratamiento de aguas residuales, bacterias de resistencia antibiótica, genes de resistencia antibiótica

References
[1] C. Peña et al., “Emerging pollutants in the urban water cycle in Latin America: A review of the current literature,” Journal of Environmental Quality, vol. 237, pp. 408-423, 2019. https://doi.org/10.1016/j.jenvman.2019.02.100
[2] A. Kumar and D. Pal, “Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges,” Journal of Environmental Chemical Engineering, vol. 6, no. 1. pp. 52-58, 2018. http://doi.org/10.1016/j.jece.2017.11.059
[3] S. P. De León, R. Arredondo and Y. López, “Resistance to antibiotic: A serious global problem”, Gaceta Médica de México, vol. 151, no. 5, pp. 632-639, 2015.
[4] J. Carlet1 et al., “Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action,” Antimicrobial Resistance and Infection Control, vol. 1, no. 11, 2012. http://doi.org/10.1186/2047-2994-1-11
[5] E. Kleina et al., “Global increase and geographic convergence in antibiotic consumption between 2000 and 2015,” PNAS, vol. 115, no. 15, 2018. https://doi.org/10.1073/pnas.1717295115
[6] W. Qing et al., “Occurrence and distribution of clinical and veterinary antibiotics in the faeces of a Chinese population,” Journal of Hazardous Materials, vol. 383, pp. 121-129, 2019. https://doi.org/10.1016/j.jhazmat.2019.121129
[7] J. Machado and D. González, “Dispensación de antibióticos de uso ambulatorio en una población colombiana,” Revista de Salud Pública, vol. 11, no. 5, pp. 734-744, 2009. https://doi.org/10.1590/S0124-00642009000500006
[8] A. Villalobos, L. Barrero, S. Rivera, M. Ovalle and D. Valera, “Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011,” Biomédica, vol. 34, no. 1. pp. 67-80, April, 2014. https://doi.org/10.7705/biomedica.v34i0.1698
[9] O. Hernández, O. Camacho, H. González, Y. Pajaro and M. Silva, “Estudio de utilización de antibióticos en Hospitales de Mediana y Alta Complejidad del Departamento del Atlántico-Colombia entre el 2016 y 2017,” Revista AVFT, vol. 37, no. 5, pp. 429-433, 2018.
[10] A. Almakki, E. Jumas, H. Marchandin and P. Licznar, “Antibiotic resistance in urban runoff,” Science of the Total Environment, vol. 667, pp. 64-76, 2019. https://doi.org/10.1016/j.scitotenv.2019.02.183
[11] O. Malik, A. Hsu, L. Johnson and A. de Sherbinin, “A global indicator of wastewater treatment to inform the Sustainable Development Goals (SDGs),” Environmental Science & Policy, vol. 48, pp. 172-185, 2015. https://doi.org/10.1016/j.envsci.2015.01.005
[12] O. Golovko, V. Kumar, G. Fedorova, T. Randak, and R. Grabic, “Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant,” Chemosphere, vol. 111, pp. 418-426, September 2014. https://doi.org/10.1016/j.chemosphere.2014.03.132
[13] K. D. Brown, J. Kulis, B. Thomson, T. H. Chapman, and D. B. Mawhinney, “Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico,” Science of the Total Environment, vol. 366, no. 2, pp. 772-783, 2006. https://doi.org/10.1016/j.scitotenv.2005.10.007
[14] M. Harrabi et al., “Analysis of multiclass antibiotic residues in urban wastewater in Tunisia,” Environmental Nanotechnology, Monitoring and Management, vol. 10, pp. 163-170, 2018. https://doi.org/10.1016/j.enmm.2018.05.006
[15] A. M. Botero et al., “An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater,” Science of the Total Environment, vol. 642, pp. 842-853, 2018. https://doi.org/10.1016/j.scitotenv.2018.06.088
[16] R. Dewil, D. Mantzavinos, I. Poulios and M. A. Rodrigo, “New perspectives for advanced oxidation processes,” Journal of Environmental Management, vol 195, no. 2, pp. 93-99, 2017. https://doi.org/10.1016/j.jenvman.2017.04.010
[17] P. Liu, H. Zhang, Y. Feng, F. Yang and J. Zhang, “Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based oxidation processes,” Chemical Engineering Journal, vol. 240, pp. 211-220, 2014. https://doi.org/10.1016/j.cej.2013.11.057
[18] X. Domènech, W. F. Jardim and M. I. Litter, “Procesos avanzados de oxidación para la eliminación de contaminantes,” in Eliminación de contaminantes por fotocatálisis heterogénea, 2001, vol. 2016, pp. 3-26. Avialable: https://n9.cl/726r3
[19] J. E. Forero, O. P. Ortiz and F. Rios, “Aplicación de procesos de oxidación avanzada como tratamiento de fenol en aguas residuales industriales de refinería,” Ciencia, Tecnología y Futuro, vol. 3, no. 1, pp. 97-109, 2005.
[20] K. V. Patiño, S. M. Arroyave and J. M. Marín, “Oxidación Electroquímica y Ozonización Aplicadas al Tratamiento de Aguas de Lavado de la Producción de Biodiesel,” Información Tecnológica, vol. 23, no. 2, pp. 41-52, 2012. http://doi.org/10.4067/S0718-07642012000200006
[21] I. Iakovides et al., “Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity,” Water Research, vol. 159, pp. 333-347, August 2019. https://doi.org/10.1016/j.watres.2019.05.025
[22] Y. Zhuang et al., “Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection,” Environmental Science and Pollution Research, vol. 22, no. 9, pp. 7037-7044, 2015. https://doi.org/10.1007/s11356-014-3919-z
[23] J. Alexander, G. Knopp, A. Dötsch, A. Wieland, and T. Schwartz, “Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts,” Science of the Total Environment, vol. 559, pp. 103-112, July, 2016.
[24] C. Stange, J. P. Sidhu, S. Toze, and A. Tiehm, “Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment,” International Journal of Hygiene and Environmental Health, vol. 222, no. 3, pp. 541-548, April 2019. https://doi.org/10.1016/j.ijheh.2019.02.002
[25] F. Lüddeke, S. Heß, C. Gallert, J. Winter, H. Güde, and H. Löffler, “Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques,” Water Research, vol. 69, pp. 243-251, February 2015. https://doi.org/10.1016/j.watres.2014.11.018
[26] Water & Wastewater, WEDECO PDO/PDA Series Ozone Generators [Online]. Available: http://www.mequipco.com/documents/PDO_PDA_2010_Lo_Res.pdf
[27] J. Castillo, A. López and E. Bandala, “Desinfección de agua mediante el uso de tecnologías emergentes basadas en procesos avanzados de oxidación,” Temas de Ingeniería de Alimentos, vol. 4, no. 1, pp. 74-83, 2010.
[28] V. Kavitha and K. Palanivelu, “Degradation of 2-Chlorophenol by Fenton and Photo-Fenton Processes - A Comparative Study,” Journal of Environmental Science and Health, Part A, vol. A38, no. 7, pp. 1215-1231, 2003. https://doi.org/10.1081/ESE-120021121
[29] N. De la Cruz et al., “Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge,” Water Research, vol. 46, no. 6, pp. 1947-1957, April 2012. https://doi.org/10.1016/j.watres.2012.01.014
[30] S. Li et al., “M. electro-F. A. promising system for antibiotics resistance genes degradation and energy generation,” Journal of Environmental Quality, pp. 134-160, January 2019. https://doi.org/10.1016/j.scitotenv.2019.134160
[31] M. Hassana et al., “Energy-efficient degradation of antibiotics in microbial electro-Fenton system catalysed by M-type strontium hexaferrite nanoparticles,” Chemical Engineering Journal, vol. 380, p. 122483, 2020. https://doi.org/10.1016/j.cej.2019.122483
[32] M. Verma and A. Haritash, “Degradation of amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes,” Journal of Environmental Chemical Engineering, vol. 7, no. 1, 2019. https://doi.org/10.1016/j.jece.2019.102886
[33] L. Souza, A. Moreira and L. Lang, “Degradation of antibiotics norfloxacin by Fenton, UV and UV/H2O2,” Journal of Environmental Management, vol. 154, pp. 8-12, 2015. https://doi.org/10.1016/j.jenvman.2015.02.021
[34] E. A. Serna, E. Vélez, P. Osorio, J. N. Jimenez, and R. A. Torres, “Inactivation of carbapenem-resistant Klebsiella pneumoniae by photo-Fenton: Residual effect, gene evolution and modifications with citric acid and persulfate,” Water Research, vol. 161, pp. 354-363, 2019. https://doi.org/10.1016/j.watres.2019.06.024
[35] D. Pelayo, Procesos de oxidación avanzada: avances recientes y tendencias futuras, Thesis, Universidad de Cantabria, Santander, Spain, 2018.
[36] A. H. Mamaghani, F. Haghighat, and C. S. Lee, “Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art,” Applied Catalysis B: Environmental, vol. 203, pp. 247-269, April 2017. https://doi.org/10.1016/j.apcatb.2016.10.037
[37] C. Guo et al., “H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes,” Journal of Hazardous Materials, vol. 323, part B, pp. 710-718, February 2017. https://doi.org/10.1016/j.jhazmat.2016.10.041
[38] M. Matos et al., “Enhanced degradation of the antibiotic sulfamethoxazole by heterogeneous photocatalysis using Ce0, 8Gd0, 2O2-d/TiO2 particles,” Journal of Alloys and Compounds, vol. 808, no. 5, 2019. https://doi.org/10.1016/j.jallcom.2019.151711
[39] P. Karaolia et al., “Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters,” Applied Catalysis B: Environmental, vol. 224, pp. 810-824, May 2018. https://doi.org/10.1016/j.apcatb.2017.11.020
[40] M.-T. Guo and X.-B. Tian, “Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO2&Ag composite photocatalysts under solar irradiation,” Journal of Hazardous Materials, vol. 380, p. 120877, December 2019. https://doi.org/10.1016/j.jhazmat.2019.120877
[41] M. Jiménez, I. J. Ferreira, S. da Silva, P. R. Guimarães, and E. M. Saggioro, “Removal of contaminants of emerging concern (CECs) and antibiotic resistant bacteria in urban wastewater using UVA/TiO2/H2O2 photocatalysis,” Chemosphere, vol. 210, pp. 449-457, November 2018. https://doi.org/10.1016/j.chemosphere.2018.07.036
[42] A. Fernández, P. Letón, R. Rosal, M. Dorado, S. Villar, and J. M. Sanz, Tratamientos avanzados de aguas residuales industriales, Madrid, España: CEIM Dirección General de Universidades e Investigación, 2006.
[43] Y. G. Adewuyi, “Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water,” Environmental Science & Technology, vol. 39, no. 22, pp. 8557-857, 2005. https://doi.org/10.1021/es0509127
[44] E. A. Serna, J. Silva, A. L. Giraldo, O. A. Flórez, and R. A. Torres, “High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water,” Ultrasonics Sonochemistry, vol. 31, pp. 276-283, July 2016. https://doi.org/10.1016/j.ultsonch.2016.01.007
[45] J. Jin et al., “3D Bombax-structured carbon nanotube sponge coupling with Ag3PO4 for tetracycline degradation under ultrasound and visible light irradiation,” Science of The Total Environment, vol. 695, 2019, p. 133694. https://doi.org/10.1016/j.scitotenv.2019.133694
[46] K. V. Patiño, S. M. Arroyave and J. M. Marín, “Oxidación electroquímica y ozonización aplicadas al tratamiento de aguas de lavado de la producción de biodiesel” Información Tecnológica, vol. 23, no. 2, pp. 41-52, 2012. http://doi.org/10.4067/S0718-07642012000200006
[47] F. Hernández, “Un mordente, un electrolito y grabado en cualquier metal,” El Artista, no. 11, pp. 181-188, December 2014.
[48] C. A. Navas, Uso del experimento de la electrólisis del agua para la enseñanza de conceptos básicos de electroquímica y la introudcción al nuevo sistema internacional de unidades a estudiantes de grado once: un enfoque basado en la Enseñanza para comprensión, Thesis, Fac. Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia, 2018.
[49] A. L. Giraldo, E. D. Erazo, O. A. Flórez, E. A. Serna and R. A. Torres, “Tratamiento electroquímico de aguas que contienen antibióticos β-lactámicos,” Revista Ciencia y Desarrollo, vol. 7, no. 1, pp. 21-29, June 2016. https://doi.org/10.19053/01217488.4227
[50] H. Zhang, F. Liu, X. Wu, J. Zhang, and D. Zhang, “Degradation of tetracycline in aqueous medium by electrochemical method,” Asia-Pacific Journal of Chemical Engineering, vol. 4, no. 5, pp. 568-573, September 2009. https://doi.org/10.1002/apj.286
[51] S. D. Jojoa, J. Silva, E. Herrera and R. A. Torres, “Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes,” Science of the Total Environment, vol. 575, pp. 1228-1238, January 2017. https://doi.org/10.1016/j.scitotenv.2016.09.201
[52] B. G. Padilla et al., “Electrochemical degradation of amoxicilin in aqueous media,” Chemical Engineering and Processing, vol. 94, pp. 93-98, 2015. https://doi.org/10.1016/j.cep.2014.12.007
[53] E. Serna, K. Berrio, and R. Torres, “Electrochemical treatment of penicillin, cephalosporin, and fluoroquinolone antibiotics via active chlorine: evaluation of antimicrobial activity, toxicity, matrix, and their correlation with the degradation pathways,” Environmental Science and Pollution Research, vol. 24, no. 30, pp. 23771-23782, October 2017. https://doi.org/10.1007/s11356-017-9985-2
[54] Y. Liu, Y. Gao, B. Yao, and D. Zou, “Removal of chlortetracycline by nano- micro-electrolysis materials: Application and mechanism,” Chemosphere, vol. 238, p. 124543, 2020. https://doi.org/10.1016/j.chemosphere.2019.124543
[55] H. Mahdizadeh and M. Malakootian, “Optimization of ciprofloxacin removal from aqueous solutions by a novel semi-fluid Fe/charcoal micro-electrolysis reactor using response surface methodology,” Process Safety and Environmental Protection, vol. 123, pp. 299-308, March 2019. https://doi.org/10.1016/j.psep.2019.01.024
[56] Y. Liu, C. Wang, Z. Sui, and D. Zou, “Degradation of chlortetracycline using nano micro-electrolysis materials with loading copper,” Separation and Purification Technology, vol. 203, pp. 29-35, September 2018. https://doi.org/10.1016/j.seppur.2018.03.064
[57] X. Cui, X. Li, N. Li, G. Chen, and H. Zheng, “Sludge based micro-electrolysis filler for removing tetracycline from solution,” Journal of Colloid and Interface Science, vol. 534, pp. 490-498, January 2019. https://doi.org/10.1016/j.jcis.2018.09.061
[58] L. J. Rossel, L.A. Rossel, M. Ferro, A. L. Ferro and R. R. Zapata, “Radiación ultravioleta-c para desinfección bacteriana (coliformes totals y termitolerantes) en el tratamiento de agua potable,” Revista de Investigaciones Altoandinas, vol. 22, no. 1, 2020. https://doi.org/10.18271/ria.2020.537
[59] W. R. Calero Cáceres, Evaluación de reservorios ambientales de partículas fágicas portadoras de genes resistencia a antibióticos, Doctoral thesis, Universitat de Barcelona, Spain, 2016.
[60] Y. Hu et al., “Removal of sulfonamide antibiotic resistant bacterial and intracellular antibiotic resistance genes by UVC-activated peroxymonosulfate,” Chemical Engineering Journal, vol. 368, pp. 888-895, July 2019. https://doi.org/10.1016/j.cej.2019.02.207
[61] J. Rodríguez-Chueca et al., “Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of antibiotics and antibiotic resistance genes?,” Science of The Total Environment, vol. 652, pp. 1051-1061, February 2019. https://doi.org/10.1016/j.scitotenv.2018.10.223
[62] T. Zhang et al., “Removal of antibiotic resistance genes and control of horizontal transfer risk by UV, chlorination and UV/chlorination treatments of drinking water,” Chemical Engineering Journal, vol. 358, pp. 589-597, February 2019. https://doi.org/10.1016/j.cej.2018.09.218
[63] C. Ferradini, “Kinetic Behavior of the Radiolysis Products of Water,” Advances in Inorganic Chemistry and Radiochemistry, vol. 3, pp. 171-205, 1961. https://doi.org/10.1016/S0065-2792(08)60240-X
[64] W. Song, W. Chen, W. J. Cooper, J. Greaves and G. E. Miller, “Free-Radical destruction of b-Lactam antibiotics in aqueous solution,” The Journal of Physical Chemistry A, vol. 112, no. 32, pp. 7411-7417, June 2008. https://doi.org/10.1021/jp803229a
[65] D. Chen et al., “Degradation of antibiotic cephalosporin C in aqueous solution and elimination of antimicrobial activity by gamma irradiation,” Chemical Engineering Journal, vol. 374, pp. 1102-1108, October 2019. https://doi.org/10.1016/j.cej.2019.06.021
[66] R. Zhuan and J. Wang, “Enhanced degradation and mineralization of sulfamethoxazole by integrating gamma radiation with Fenton-like processes,” Radiation Physics and Chemistry, vol. 166, 2020. https://doi.org/10.1016/j.radphyschem.2019.108457
[67] R. Changotra, J. P. Guin, L. Varshney, and A. Dhir, “Assessment of reaction intermediates of gamma radiation-induced degradation of ofloxacin in aqueous solution,” Chemosphere, vol. 208, pp. 606-613, October 2018. https://doi.org/10.1016/j.chemosphere.2018.06.003
[68] W. Zheng, X. Wen, B. Zhang, and Y. Qiu, “Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant,” Science of The Total Environment, vol. 646, pp. 1293-1303, January 2019. https://doi.org/10.1016/j.scitotenv.2018.07.400
[69] J. A. Villamil, Empleo de un bioreactor de membrane (MBR) y un bioreactor híbrido (MBRPAC) para el tratamiento del agua residual de la industria cosmética, Thesis, Dep. Ing. Civil y Amb., Universidad de los Andes, Madrid, Spain, 2012.
[70] T. H. Le, C. Ng, N. H. Tran, H. Chen, and K. Y.-H. Gin, “Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems,” Water Research, vol. 145, pp. 498-508, 2018. https://doi.org/10.1016/j.watres.2018.08.060
[71] Y. Zhu, Y. Wang, S. Zhou, X. Jiang, X. Ma, and C. Liu, “Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: Role of membrane foulants,” Water Research, vol. 130, pp. 139-150, March 2018. https://doi.org/10.1016/j.watres.2017.11.067
[72] B.-J. Shi et al., “Application of membrane bioreactor for sulfamethazine-contained wastewater treatment,” Chemosphere, vol. 193, pp. 840-846, February 2018. https://doi.org/10.1016/j.chemosphere.2017.11.051
[73] Z. Xu, X. Song, G. Li, Y. Li, and W. Luo, “Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment,” Science of The Total Environment, vol. 684, pp. 23-30, September 2019. https://doi.org/10.1016/j.scitotenv.2019.05.241
[74] W. Zhao, Q. Sui, X. Mei, and X. Cheng, “Efficient elimination of sulfonamides by an anaerobic/anoxic/oxic-membrane bioreactor process: Performance and influence of redox condition,” Science of The Total Environment, vol. 633, pp. 668-676, August 2018. https://doi.org/10.1016/j.scitotenv.2018.03.207
[75] T. T. Nguyen et al., “Removal of antibiotics in sponge membrane bioreactors treating hospital wastewater: Comparison between hollow fiber and flat sheet membrane systems,” Bioresource Technology, vol. 240, pp. 42-49, September 2017. https://doi.org/10.1016/j.biortech.2017.02.118
[76] G. Prados Joya, Tratamiento de aguas para la eliminación de antibióticos -nitroimidazoles- mediante adsorción sobre carbón activado y tecnologías avanzadas de oxidación, Doctoral thesis, Universidad de Granada, Spain, 2010.
[77] J. G. Carriazo, M. J. Saavedra and M. F. Molina, “Propiedades adsortivas de un carbón actidavo y determinación de la ecuación de Langmuir empleando materiales de bajo costo,” Universidad Nacional Autónoma de México, vol. 21, no. 3, pp. 224-229, 2010. https://doi.org/10.1016/S0187-893X(18)30087-9
[78] C. Keun, K. Sang and K. Seung, “Removal of antibiotics by coagulación and granular activated carbon filtration,” Journal of Hazardous Materials, vol. 1, no. 1, pp. 38-43, 2008. https://doi.org/10.1016/j.jhazmat.2007.05.059
[79] S. A. Snyder et al., “Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals,” Desalination, vol. 202, no. 1. pp. 156-181, 2007. https://doi.org/10.1016/j.desal.2005.12.052
[80] M. J. Ahmed and S. K. Theydan, “Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis,” Journal of the Taiwan Institute of Chemical Engineers, vol. 45, no. 1, pp. 219-226, January 2014. https://doi.org/10.1016/j.jtice.2013.05.014
[81] G. Nazari, H. Abolghasemi, and M. Esmaieli, “Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shell-based activated carbon,” Journal of the Taiwan Institute of Chemical Engineers, vol. 58, pp. 357-365, January 2016. https://doi.org/10.1016/j.jtice.2015.06.006
[82] Q. Tang et al., “Control of antibiotic resistance in China must not be delayed: The current state of resistance and policy suggestions for the government, medical facilities, and patients,” BioScience Trends, vol. 10, no. 1, pp. 1-6, 2016. https://doi.org/10.5582/bst.2016.01034
[83] M. Ferech et al., “European Surveillance of Antimicrobial Consumption (ESAC): outpatient antibiotic use in Europe,” Journal of Antimicrobial Chemotherapy, vol. 48, pp. 401-407, 2006.
[84] F. Reinthaler et al., “Antibiotic resistance of E. coli in sewage and sludge,” Water Research, vol. 37, no. 8, pp. 1685-1692, April 2003.
[85] A. Olivera et al. “Ocurrence, antibiotic-resistance and virulence of E. coli strains isolated from mangrove oysters (Crassostrea gasar) farmed in estuaries of Amazonia,” Marine Pollution Bulletin, vol. 157, pp. 111-302, 2020. https://doi.org/10.1016/j.marpolbul.2020.111302
[86] S. Mosquito, J. Ruiz, J. Bauer and T. Ochoa, “Mecanismos moleculares de Resistencia antibiótica en Escherichia coli asociadas a diarrea,” Revista Peruana de Medicina Experimental y Salud Publica, vol. 28, no. 4, pp. 648-656, 2011. https://doi.org/10.17843/rpmesp.2011.284.430
[87] G. Pliego et al., “Trends in the intensification of the Fenton process for wastewater treatment -An overview,” Critical Reviews in Environmental Science and Technology, vol. 45, no. 24, pp. 2611-2692, 2015. https://doi.org/10.1080/10643389.2015.1025646
[88] J. Pignatello, E. Oliveros and A. MacKay, “Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry,” Journal of Hazardous Materials, vol. 36, pp. 1-84, 2006.
[89] E. A. Serna et al., “Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes,” Water Research, vol. 154, pp. 349-360, 2019. https://doi.org/10.1016/j.watres.2019.01.045
[90] P. Kajitvichyanukul, L. Ming-Chun, L. Chih-Hsiang, W. Wirojanagud and T. Koottateo, “Degradation and detoxification of formaline wastewater by advanced oxidation processes”, Journal of Hazardous Materials, vol. 135, pp. 337-343, July 2006.
[91] A. Vorontsov, “Advancing Fenton and photo-Fenton water treatment through the catalyst design”, Journal of Hazardous Materials, vol. 372, pp. 103-112, 2019. https://doi.org/10.1016/j.jhazmat.2018.04.033
[92] B. Feier, A. Florea, C. Cristea and R. Sandulescu, “Electrochemical detection and removal of pharmaceuticals in waste waters,” Current Opinion in Electrochemistry, vol. 11, pp. 1-11, October 2018. https://doi.org/10.1016/j.coelec.2018.06.012
[93] P. Liu, H. Zhang, Y. Feng, C. Shen and F. Yang, “Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater,” Journal of Hazardous Materials, vol. 296, pp. 248-255, 2015. https://doi.org/10.1016/j.jhazmat.2015.04.048
[94] E. Lacasa, S. Cotillas, C. Saez, J. Lobato, P. Cañizares and M. Rodrigo, “Environmental applications of electrochemical technology. What is needed to enable full-scale applications?” Current Opinion in Electrochemistry, vol. 16, pp. 149-156, 2019. https://doi.org/10.1016/j.coelec.2019.07.002
[95] C. Byrne, G. Subramanian and S. Pillai, “Recent advances in photocatalysis for environmental applications,” Journal of Environmental Chemical Engineering, vol. 6, no. 3, pp. 3531-3555, June 2018. https://doi.org/10.1016/j.jece.2017.07.080
[96] L. Garcés, E. Mejía and J. Santamaría, “La fotocatálisis como alternativa para el tratamiento de aguas residuales,” Revista Lasallista de Investigación, vol. 1, no. 1, pp. 83-92, 2004.
[97] J. You, Y. Guo, R. Guo and X. Liu, “A review of visible light-active photocatalysts for water disinfection: Features and prospects,” Chemical Engineering Journal, vol. 373, pp. 624-641, October, 2019. https://doi.org/10.1016/j.cej.2019.05.071
[98] W. Jianlong, “Application of radiation technology to sewage sludge processing: A review,” Journal of Hazardous Materials, vol. 143, pp. 2-7, 2007. https://doi.org/10.1016/j.jhazmat.2007.01.027
[99] M. Salgot and M. Folch, “Wastewater treatment and water reuse,” Current Opinion in Environmental Science & Health, vol. 2, pp. 64-74, April 2018. https://doi.org/10.1016/j.coesh.2018.03.005
[100] H. Jo et al., “Improvement of biodegradability of industrial wastewaters by radiation treatment,” Journal of Radioanalytical and Nuclear Chemistry, vol. 268, no. 1, pp. 145-150, 2006. https://doi.org/10.1007/s10967-006-0140-7
[101] P. Cañizares, R. Paz, C. Sáez and M. A. Rodrigo, “Costs of the electrochemical oxidation of wastewater: A comparison with ozonation and Fenton oxidation processes,” Journal of Environmental Management, vol. 90, no. 1, pp. 410-420, 2009. https://doi.org/10.1016/j.jenvman.2007.10.010
[102] M. G. Alalm, A. Tawfik and S. Ookawars, “Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pestivides industry wastewater: Operational conditions, kinetics, and costs,” Journal of Water Process Engineering, vol. 8, pp. 55-63, 2015. https://doi.org/10.1016/j.jwpe.2015.09.007
[103] J. Peres, C. Costa, I. Portugal and M. I. Nunes, “Fenton processes for AOX removal from a kraft pulp bleaching industrial wastewater: Optimisation of operating conditions and cost assessmente,” Journal of Environmental Chemical Engineering, vol. 8, no. 4, 2020. https://doi.org/10.1016/j.jece.2020.104032
How to Cite
Zapata Zúñiga, M. C., Parra-Pérez, M. A. ., Álvarez-Berrio, J. A., & Molina-Gómez, N. I. . (2021). Technologies in Wastewater Treatment Plants for the Removal of Antibiotics, Resistant Bacteria and Antibiotic Resistance Genes: a Review of the Current Literature. Ingenieria Y Universidad, 26. https://doi.org/10.11144/Javeriana.iyu26.twtp
Section
Civil and environmental engineering