Resumen
Existem evidências que apontam para a importância do córtex préfrontal dorsolateral (CPFDL) na percepção de intervalos de tempo. A ETCC (eletroestimulação transcraniana por corrente contínua) modula a excitabilidade cortical, podendo ser utilizada para influenciar o desempenho de diferentes funções cerebrais, como a estimativa de tempo. Nosso objetivo foi avaliar o efeito da estimulação do CPFDL direito e esquerdo sobre a reprodução de intervalos de tempo. 26 indivíduos foram submetidos a estimulação transcraniana de 2mA no CPFDL por 20 min (anódica, catódica ou sham). Em seguida, participaram de uma tarefa de reprodução de intervalos de tempo de 4 e 8 segundos. Através de ANOVA para medidas repetidas para os fatores estimulação (anódica, catódica, sham), Intervalos (4s e/ou 8s) e local (esquerdo e direito), pudemos observar que a estimulação anódica do CPFDL do hemisfério direito resultou em subestimativa maior no intervalo de 4 segundos, enquanto o uso de corrente catódica sobre o CPFDL esquerdo provocou uma superestimativa do tempo para o intervalo de 4 segundos. Nossos resultados corroboram a importância do CPFDL direito na percepção de tempo. Ainda, o efeito assimétrico observado é interessante, confirmando que o CPFDL esquerdo está associado às funções executivas, importantes na percepção de tempo.
Block, R. A., Hancock, P. A., & Zakay, D. (2010). How cognitive load affects duration judgments: A meta-analytic review. Acta Psychologica, 134, 330-343.
Coull, J. T., Vidal, F., Nazarian, B., Macar, F. (2004) Functional anatomy of the attentional modulation of time estimation. Science, 303,1506-8.
Church, R. M. (1984). Properties of the internal clock. Annals of the New York Academy of Sciences, 423, 566-582.
Fortin C. & Breton R. (1995). Temporal interval production and processing in working memory. Perception & Psychophysics, 57(2),203-15
Gibbon, J. (1977). Scalar expectancy theory and Weber's law in animal timing. Psychological Review, 84 (3), 279.
Gibbon, J., Church, R. M. & Meck, W. H. (1984). Scalar timing in memory. In J. Gibbon & L. Allan (Eds.), Timing and time perception (pp. 52-77). New York, NY: New York Academy of Sciences.
Gironell, A.; Rami, L.; Kulisevsky, J.; Garcia-Sanchez, C.,(2005). Lack of prefrontal repetitive transcranial magnetic stimulation effects in time production processing. European Journal of Neurology 12(11), 891-896.
Gu B. M., Meck W. H. (2011). “New perspectives on Vierordt's law: memory-mixing in ordinal temporal comparison tasks,” in Time and Time Perception 2010, LNAI 6789, eds Vatakis A., Esposito A., Cummins F., Papadelis G., Giagkou M., editors. (Berlin: Springer-Verlag;), pp 67–78.
Jeon S.Y., Han S.J. (2012) Improvement of the working memory and naming by transcranial direct current stimulation. Annals of Rehabilitation Medicine, 36, 585–595.
Jones C.R., Rosenkranz K., Rothwell J.C, Jahanshahi M. (2004). The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Experimental Brain Research 158,366–372.
Kane, Michael J.; Engle, Randall W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review 9 (4): 637–71.
Koch, G., Oliveri, M., Carlesimo, G. A., Caltagirone, C. (2002). Selective deficit of time perception in a patient with right prefrontal cortex lesion. Neurology, 59, 1658-9.
Koch, G., Oliveri, M., Torriero, S., Caltagirone, C. (2003). Underestimation of time perception after repetitive transcranial magnetic stimulation. Neurology, 60,1844-6.
Koch, G., Oliveri, M., Brusa, L., Stanzione, P., Torriero, S. & Caltagirone, C. (2004).High-frequency rTMS improves time perception in Parkinson disease. Neurology,63, 2405–2406.
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (Eds.). (1997). International affective picture system (IAPS): Technical manual and affective ratings. University of Florida, Gainesville, FL.:
Lang N., Siebner H.R., Ward N.S., Lee L, Nitsche M.A., Paulus W., Rothwell J.C., Lemon R.N., Frackowiak R.S. (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? European Journal of Neuroscience 22, 495–504.
Lewis P.A., Miall R.C. (2006a). Remembering the time: a continuous clock. Trends in Cognitive Science, 10(9),401-6.
Lewis P.A., Miall R.C. (2006b). A right hemispheric prefrontal system for cognitive time measurement. Behavioral Processes, 71(2-3),226-34.
Lewis, P. A., Miall, R. C. (2003a) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Current Opinion in Neurobiology, 13(2),250-5.
Lewis, P. A., Miall, R. C. (2003b) Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia, 41,1583-92.
Martin JLR, Barbanoj MJ, Schlaeper TE, Thompson E, Pe´rez V,Kulisevsky J (2003) Repetitive transcranial magnetic stimulation for the treatment of depression: Systematic review and meta-analysis. Br J Psychiatr 182:480–491.
Marié R.M., & Defer G.L. (2003). Working memory and dopamine: clinical and experimental clues. Current Opinion in Neurology, 2, S29-35.
Matell M.S. & Meck W.H. (2000) Neuropsychological mechanisms of interval timing behavior. Bioessays, 22(1), 94–103.
Meck, W. & Angell, K. E. (1992). Repeated administration of pyrithiamine leads to a proportional increase in the remembered duration of events. Psychobiology, 20, 39-46.
Meck W.H. (1986) Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacology Biochemistry and Behavior, 25, 1185–1189.
Meck, W.H.(1996) Neuropharmacology of timing and time perception. Cognitive Brain Research, 3,227-242.
Meck WH, Benson AM. (2002) Dissecting the brain’s internal clock: how frontal-striatal circuitry keeps time and shifts attention. Brain and Cognition, 48,195–211.
Mimura, M., Kinsbourne, M. & O’Connor, M. (2000).Time estimation by patients with frontal lesions and by Korsakoff amnesics. Journal of the International Neuropsychological Society., 6, 517–528.
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527 (3), 633-639.
Nitsche M.A. (2002): Transcranial direct current stimulation: A new treatment for depression? Bipolar Disorder 4(1), 98 –99.
Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A. (2008). Transcranial direct current stimulation: State of the art. Brain Stimulation, 1(3), 206-223.
Pastor M.A., Artieda J., Jahanshahi M., Obeso J.A. (1992). Time estimation and reproduction is abnormal in Parkinson's disease. Brain, 115(1),211-25.
Ribeiro, R.L. Pompeia, S & Bueno, OFA (2004) Normas brasileiras para o International Affective Picture System (IAPS): comunicação breve. R. Psiquiatr. RS, 26, 190-194.
Rosenkranz K., Nitsche M.A., Tergau F., Paulus W. (2000). Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neuroscience Letters, 296(1),61-3.
Silton R. L., Miller G. A., Towers D. N., Engels A. S., Edgar J. C., Spielberg J. M., et al. (2010). The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control. Neuroimage 50, 1292–1302.
Vallesi, A., Shallice, T., Walsh, V. (2007). Role of the prefrontal cortex in the foreperiod effect: TMS evidence for dual mechanisms in temporal preparation. Cerebral Cortex, 17(2), 466-74.
Vanderhasselt, M.A., De Readt R, Baeken C, Leyman L, D’haenen H. (2006). The influence of rTMS over the left dorsolateral prefrontal cortex on Stroop task performance. Exp. Brain Res.169, 279 – 282.
Vicario C.M., Martino, D., Koch, G. (2013). Temporal accuracy and variability in the left and right posterior parietal cortex. Neuroscience, 245,121–128.
Wager T.D. & Smith E.E. (2003). Neuroimaging studies of working memory: a meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255-274.
Esta revista científica se encuentra registrada bajo la licencia Creative Commons Reconocimiento 4.0 Internacional. Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente en formato digital, siempre que se reconozca el nombre de los autores y a la Pontificia Universidad Javeriana. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, para cualquier finalidad (incluso comercial), siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios. La Pontificia Universidad Javeriana no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. El aval sobre la intervención de la obra (revisión, corrección de estilo, traducción, diagramación) y su posterior divulgación se otorga mediante una licencia de uso y no a través de una cesión de derechos, lo que representa que la revista y la Pontificia Universidad Javeriana se eximen de cualquier responsabilidad que se pueda derivar de una mala práctica ética por parte de los autores. En consecuencia de la protección brindada por la licencia de uso, la revista no se encuentra en la obligación de publicar retractaciones o modificar la información ya publicada, a no ser que la errata surja del proceso de gestión editorial. La publicación de contenidos en esta revista no representa regalías para los contribuyentes.