Publicado May 18, 2017


Google Scholar
Search GoogleScholar

F Hurtado

Melissa Andrea N Cardenas

Fernando Cardenas

Laura Andrea León



La enfermedad de Parkinson (EP) es la patología neurodegenerativa motora con mayor incidencia a nivel mundial. Esta afecta a aproximadamente 2-3% de la población mayor a 60 años de edad y sus causas aún no han sido bien determinadas. Actualmente no existe cura para esta patología; sin embargo, es posible contar con diferentes tratamientos que permiten aliviar algunos de sus síntomas y enlentecer su curso. Estos tratamientos tienen como premisa contrarrestar los efectos ocasionados por la pérdida de la función dopaminérgica de la sustancia nigra (SN) sobre estructuras como el núcleo subtálamico (NST) o globo pálido interno (GPi) ya sea por medio de tratamientos farmacológicos, estimulación cerebral profunda (ECP) o con el implante celular. Existen también investigaciones que están dirigiendo su interés al desarrollo de fármacos con potencial terapéutico, que presenten alta especificidad a receptores colinérgicos de nicotina (nAChRs) y antagonistas de receptores de adenosina, específicamente del subtipo A2A. Estos últimos, juegan un papel importante en el control de liberación dopaminérgica y en los procesos de neuroprotección. En esta revisión se pretende ofrecer una panorámica actual sobre algunos de los factores de riesgo asociados a EP, algunos de los tratamientos actuales más utilizados y acerca del rol de sustancias potencialmente útiles en la prevención de esta enfermedad.


Parkinson Disease (PD), Deep brain stimulation (DBS), substancia nigra (SN), subthalami nucleus (NST), globo pálido interno (GPi)Enfermedad de Parkinson (EP), estimulación cerebral profunda (ECP), sustancia nigra (SN), núcleo subtálamico (NST), globo pálido interno (GPi)

Abin-Carriquiry, J. A., McGregor-Armas, R., Costa, G., Urbanavicius, J., & Dajas, F. (2002). Presynaptic involvement in the nicotine prevention of the dopamine loss provoked by 6-OHDA administration in the substantia nigra. Neurotox.Res., 4, 133-139.

Achey, M., Aldred, J. L., Aljehani, N., Bloem, B. R., Biglan, K. M., Chan, P. et al. (2014). The past, present, and future of telemedicine for Parkinson's disease. Mov Disord., 29, 871-883.

Ahlskog, J. E. & Muenter, M. D. (2001). Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord., 16, 448-458.

Albin, R. L., Price, R. H., Sakurai, S. Y., Penney, J. B., & Young, A. B. (1991). Excitatory and inhibitory amino acid binding sites in human dentate nucleus. Brain Res., 560, 350-353.

Albin, R. L., Sakurai, S. Y., Makowiec, R. L., Higgins, D. S., Young, A. B., & Penney, J. B. (1991). Excitatory amino acid, GABA(A), and GABA(B) binding sites in human striate cortex. Cereb.Cortex, 1, 499-509.

Andereggen, L., Meyer, M., Guzman, R., Ducray, A. D., & Widmer, H. R. (2009). Effects of GDNF pretreatment on function and survival of transplanted fetal ventral mesencephalic cells in the 6-OHDA rat model of Parkinson's disease. Brain Res., 1276, 39-49.

Annett, L. E., Torres, E. M., Clarke, D. J., Ishida, Y., Barker, R. A., Ridley, R. M. et al. (1997). Survival of nigral grafts within the striatum of marmosets with 6-OHDA lesions depends critically on donor embryo age. Cell Transplant., 6, 557-569.

Antoniades, C. A., Rebelo, P., Kennard, C., Aziz, T. Z., Green, A. L., & FitzGerald, J. J. (2015). Pallidal Deep Brain Stimulation Improves Higher Control of the Oculomotor System in Parkinson's Disease. J.Neurosci., 35, 13043-13052.

Arlotti, M., Rosa, M., Marceglia, S., Barbieri, S., & Priori, A. (2016). The adaptive deep brain stimulation challenge. Parkinsonism.Relat Disord., 28, 12-17.

Arlotti, M., Rossi, L., Rosa, M., Marceglia, S., & Priori, A. (2016). An external portable device for adaptive deep brain stimulation (aDBS) clinical research in advanced Parkinson's Disease. Med.Eng Phys., 38, 498-505.

Astradsson, A. & Aziz, T. (2016). Parkinson's disease: fetal cell or stem cell derived treatments. BMJ, 352, h6340.

Baetge, E. E. (1993). Neural stem cells for CNS transplantation. Ann.N.Y.Acad.Sci., 695, 285-291.

Barker, R. A., Drouin-Ouellet, J., & Parmar, M. (2015). Cell-based therapies for Parkinson disease-past insights and future potential. Nat.Rev.Neurol., 11, 492-503.

Baron, J. A. (1986). Cigarette smoking and Parkinson's disease. Neurology, 36, 1490-1496.

Bartels, A. L. & Leenders, K. L. (2009). Parkinson's disease: the syndrome, the pathogenesis and pathophysiology. Cortex, 45, 915-921.

Bashkatova, V., Alam, M., Vanin, A., & Schmidt, W. J. (2004). Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain. Exp.Neurol., 186, 235-241.

Baumann, R. J., Jameson, H. D., McKean, H. E., Haack, D. G., & Weisberg, L. M. (1980). Cigarette smoking and Parkinson disease: 1. Comparison of cases with matched neighbors. Neurology, 30, 839-843.

Benabid, A. L. & Torres, N. (2012). New targets for DBS. Parkinsonism.Relat Disord., 18 Suppl 1, S21-S23.

Berlim, M. T., McGirr, A., Van den Eynde, F., Fleck, M. P., & Giacobbe, P. (2014). Effectiveness and acceptability of deep brain stimulation (DBS) of the subgenual cingulate cortex for treatment-resistant depression: a systematic review and exploratory meta-analysis. J.Affect.Disord., 159, 31-38.

Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V., & Greenamyre, J. T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat.Neurosci., 3, 1301-1306.

Beudel, M. & Brown, P. (2016). Adaptive deep brain stimulation in Parkinson's disease. Parkinsonism.Relat Disord., 22 Suppl 1, S123-S126.

Blum, D., Torch, S., Lambeng, N., Nissou, M., Benabid, A. L., Sadoul, R. et al. (2001). Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog.Neurobiol., 65, 135-172.

Blumenfeld, Z., Velisar, A., Miller, K. M., Hill, B. C., Shreve, L. A., Quinn, E. J. et al. (2015). Sixty hertz neurostimulation amplifies subthalamic neural synchrony in Parkinson's disease. PLoS.One., 10, e0121067.

Bonilla, S., Hall, A. C., Pinto, L., Attardo, A., Gotz, M., Huttner, W. B. et al. (2008). Identification of midbrain floor plate radial glia-like cells as dopaminergic progenitors. Glia, 56, 809-820.

Bovet, D., Durel, P., & Longo, V. (1950). [Antagonism of dibenzothiazine derivatives (diparcol, parsidol, phenergan) towards the central effects of nicotine; correspondence with clinical experimentation in Parkinson's disease]. C.R.Seances Soc.Biol.Fil., 144, 514-517.

Braithwaite, S. P., Stock, J. B., & Mouradian, M. M. (2012). alpha-Synuclein phosphorylation as a therapeutic target in Parkinson's disease. Rev.Neurosci., 23, 191-198.

Breckenridge, C. B., Berry, C., Chang, E. T., Sielken, R. L., Jr., & Mandel, J. S. (2016). Association between Parkinson's Disease and Cigarette Smoking, Rural Living, Well-Water Consumption, Farming and Pesticide Use: Systematic Review and Meta-Analysis. PLoS.One., 11, e0151841.

Brenner, S. R. (2013). Blue-green algae or cyanobacteria in the intestinal micro-flora may produce neurotoxins such as Beta-N-Methylamino-L-Alanine (BMAA) which may be related to development of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson-Dementia-Complex in humans and Equine Motor Neuron Disease in horses. Med.Hypotheses, 80, 103.

Bretaud, S., Lee, S., & Guo, S. (2004). Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease. Neurotoxicol.Teratol., 26, 857-864.

Brundin, P. & Bjorklund, A. (1998). Survival of expanded dopaminergic precursors is critical for clinical trials. Nat.Neurosci., 1, 537.

Brundin, P., Karlsson, J., Emgard, M., Schierle, G. S., Hansson, O., Petersen, A. et al. (2000). Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant., 9, 179-195.

Brusa, L., Pierantozzi, M., Peppe, A., Altibrandi, M. G., Giacomini, P., Mazzone, P. et al. (2001). Deep brain stimulation (DBS) attentional effects parallel those of l-dopa treatment. J.Neural Transm.(Vienna.), 108, 1021-1027.

Carpenter, D. O. (2001). Effects of metals on the nervous system of humans and animals. Int.J.Occup.Med.Environ.Health, 14, 209-218.

Chen, C. C., Shih, Y. Y., & Chang, C. (2013). Dopaminergic imaging of nonmotor manifestations in a rat model of Parkinson's disease by fMRI. Neurobiol.Dis., 49, 99-106.

Chen, J. F. (2014). Adenosine receptor control of cognition in normal and disease. Int.Rev.Neurobiol., 119, 257-307.

Chen, L., Xie, Z., Turkson, S., & Zhuang, X. (2015). A53T human alpha-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J.Neurosci., 35, 890-905.

Chung, S., Hedlund, E., Hwang, M., Kim, D. W., Shin, B. S., Hwang, D. Y. et al. (2005). The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol.Cell Neurosci., 28, 241-252.

Chwiej, J., Adamek, D., Szczerbowska-Boruchowska, M., Krygowska-Wajs, A., Bohic, S., & Lankosz, M. (2008). Study of Cu chemical state inside single neurons from Parkinson's disease and control substantia nigra using the micro-XANES technique. J.Trace Elem.Med.Biol., 22, 183-188.

Coppede, F., Tannorella, P., Stoccoro, A., Chico, L., Siciliano, G., Bonuccelli, U. et al. (2016). Methylation analysis of DNA repair genes in Alzheimer's disease. Mech.Ageing Dev..

Costa, G., Abin-Carriquiry, J. A., & Dajas, F. (2001). Nicotine prevents striatal dopamine loss produced by 6-hydroxydopamine lesion in the substantia nigra. Brain Res., 888, 336-342.

Cusin, C. & Dougherty, D. D. (2013). Correction: Somatic therapies for treatment-resistant depression: ECT, TMS, VNS, DBS. Biol.Mood.Anxiety.Disord., 3, 1.

Dafsari, H. S., Reddy, P., Herchenbach, C., Wawro, S., Petry-Schmelzer, J. N., Visser-Vandewalle, V. et al. (2016). Beneficial Effects of Bilateral Subthalamic Stimulation on Non-Motor Symptoms in Parkinson's Disease. Brain Stimul., 9, 78-85.

Das, M. & Ganguly, D. K. (1977). Interactions of some cholinolytic anti-parkinson drugs with nicotine and oxotremorine on rat diaphragm. Toxicol.Appl.Pharmacol., 39, 149-152.

Deleu, D., Jacob, P., Chand, P., Sarre, S., & Colwell, A. (2006). Effects of caffeine on levodopa pharmacokinetics and pharmacodynamics in Parkinson disease. Neurology, 67, 897-899.

DeLong, M. & Wichmann, T. (2012). Deep brain stimulation for movement and other neurologic disorders. Ann.N.Y.Acad.Sci., 1265, 1-8.

DeLong, M. R. & Wichmann, T. (2015). Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease. JAMA Neurol., 72, 1354-1360.

Deng, X., Liang, Y., Lu, H., Yang, Z., Liu, R., Wang, J. et al. (2013). Co-transplantation of GDNF-overexpressing neural stem cells and fetal dopaminergic neurons mitigates motor symptoms in a rat model of Parkinson's disease. PLoS.One., 8, e80880.

Dexter, D. T., Wells, F. R., Lees, A. J., Agid, F., Agid, Y., Jenner, P. et al. (1989). Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J.Neurochem., 52, 1830-1836.

Dorsey, E. R., Constantinescu, R., Thompson, J. P., Biglan, K. M., Holloway, R. G., Kieburtz, K. et al. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 68, 384-386.

Drolet, R. E., Cannon, J. R., Montero, L., & Greenamyre, J. T. (2009). Chronic rotenone exposure reproduces Parkinson's disease gastrointestinal neuropathology. Neurobiol.Dis., 36, 96-102.

Dunnett, S. B., Bjorklund, A., Schmidt, R. H., Stenevi, U., & Iversen, S. D. (1983). Intracerebral grafting of neuronal cell suspensions. IV. Behavioural recovery in rats with unilateral 6-OHDA lesions following implantation of nigral cell suspensions in different forebrain sites. Acta Physiol Scand.Suppl, 522, 29-37.

Dunnett, S. B., Bjorklund, A., Schmidt, R. H., Stenevi, U., & Iversen, S. D. (1983). Intracerebral grafting of neuronal cell suspensions. V. Behavioural recovery in rats with bilateral 6-OHDA lesions following implantation of nigral cell suspensions. Acta Physiol Scand.Suppl, 522, 39-47.

Ebersbach, G., Stock, M., Muller, J., Wenning, G., Wissel, J., & Poewe, W. (1999). Worsening of motor performance in patients with Parkinson's disease following transdermal nicotine administration. Mov Disord., 14, 1011-1013.

Farkas, L. M. & Krieglstein, K. (2002). Heparin-binding epidermal growth factor-like growth factor (HB-EGF) regulates survival of midbrain dopaminergic neurons. J.Neural Transm.(Vienna.), 109, 267-277.

Fernandez-Espejo, E., Armengol, J. A., Flores, J. A., Galan-Rodriguez, B., & Ramiro, S. (2005). Cells of the sympathoadrenal lineage: biological properties as donor tissue for cell-replacement therapies for Parkinson's disease. Brain Res.Brain Res.Rev., 49, 343-354.

Ferreira, D. G., Batalha, V. L., Vicente, M. H., Coelho, J. E., Gomes, R., Goncalves, F. Q. et al. (2015). Adenosine A2A Receptors Modulate alpha-Synuclein Aggregation and Toxicity. Cereb.Cortex.

Freed, W. J., Poltorak, M., & Becker, J. B. (1990). Intracerebral adrenal medulla grafts: a review. Exp.Neurol., 110, 139-166.

Fricker-Gates, R. A. & Gates, M. A. (2010). Stem cell-derived dopamine neurons for brain repair in Parkinson's disease. Regen.Med., 5, 267-278.

Gao, H. M., Hong, J. S., Zhang, W., & Liu, B. (2003). Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. J.Neurosci., 23, 1228-1236.

Garcia-Montes, J. R., Boronat-Garcia, A., Lopez-Colome, A. M., Bargas, J., Guerra-Crespo, M., & Drucker-Colin, R. (2012). Is nicotine protective against Parkinson's disease? An experimental analysis. CNS.Neurol.Disord.Drug Targets., 11, 897-906.

Gash, D. M., Gerhardt, G. A., & Hoffer, B. J. (1998). Effects of glial cell line-derived neurotrophic factor on the nigrostriatal dopamine system in rodents and nonhuman primates. Adv.Pharmacol., 42, 911-915.

Gerlach, M., Braak, H., Hartmann, A., Jost, W. H., Odin, P., Priller, J. et al. (2002). Current state of stem cell research for the treatment of Parkinson's disease. J.Neurol., 249 Suppl 3, III/33-III/35.

Geroin, C., Gandolfi, M., Bruno, V., Smania, N., & Tinazzi, M. (2016). Integrated Approach for Pain Management in Parkinson Disease. Curr.Neurol.Neurosci.Rep., 16, 28.

Glover, V., Gibb, C., & Sandler, M. (1986). The role of MAO in MPTP toxicity--a review. J.Neural Transm.Suppl, 20, 65-76.

Goers, J., Manning-Bog, A. B., McCormack, A. L., Millett, I. S., Doniach, S., Di Monte, D. A. et al. (2003). Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry, 42, 8465-8471.

Gorell, J. M., Peterson, E. L., Rybicki, B. A., & Johnson, C. C. (2004). Multiple risk factors for Parkinson's disease. J.Neurol.Sci., 217, 169-174.

Gorell, J. M., Rybicki, B. A., Cole, J. C., & Peterson, E. L. (1999). Occupational metal exposures and the risk of Parkinson's disease. Neuroepidemiology, 18, 303-308.

Guridi, J., Herrero, M. T., Luquin, M. R., & Obeso, J. A. (1991). [Cellular transplants for Parkinson's disease]. Neurologia, 6, 175-183.

Haack, D. G., Baumann, R. J., McKean, H. E., Jameson, H. D., & Turbek, J. A. (1981). Nicotine exposure and Parkinson disease. Am.J.Epidemiol., 114, 191-200.

Hagell, P. & Brundin, P. (2001). Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J.Neuropathol.Exp.Neurol., 60, 741-752.

Haggerty, T., Credle, J., Rodriguez, O., Wills, J., Oaks, A. W., Masliah, E. et al. (2011). Hyperphosphorylated Tau in an alpha-synuclein-overexpressing transgenic model of Parkinson's disease. Eur.J.Neurosci., 33, 1598-1610.

Hansen, J. T., Bing, G. Y., Notter, M. F., & Gash, D. M. (1988). Paraneuronal grafts in unilateral 6-hydroxydopamine-lesioned rats: morphological aspects of adrenal chromaffin and carotid body glomus cell implants. Prog.Brain Res., 78, 507-511.

Hansen, J. T., Notter, M. F., Okawara, S. H., & Gash, D. M. (1988). Organization, fine structure, and viability of the human adrenal medulla: considerations for neural transplantation. Ann.Neurol., 24, 599-609.

Huang, L. Z., Campos, C., Ly, J., Ivy, C. F., & Quik, M. (2011). Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology, 60, 861-868.

Janhunen, S. & Ahtee, L. (2007). Differential nicotinic regulation of the nigrostriatal and mesolimbic dopaminergic pathways: implications for drug development. Neurosci.Biobehav.Rev., 31, 287-314.

Jankovic, J. & Stacy, M. (2007). Medical management of levodopa-associated motor complications in patients with Parkinson's disease. CNS.Drugs, 21, 677-692.

Janson, A. M. & Moller, A. (1993). Chronic nicotine treatment counteracts nigral cell loss induced by a partial mesodiencephalic hemitransection: an analysis of the total number and mean volume of neurons and glia in substantia nigra of the male rat. Neuroscience, 57, 931-941.

Jaseja, H., Gupta, A., Jain, R., & Gupta, P. (2014). Intractable epilepsy: deep brain stimulation (DBS)-based electrophysiological biomarker. Epilepsy Behav., 31, 13-14.

Jenner, P. (2014). An overview of adenosine A2A receptor antagonists in Parkinson's disease. Int.Rev.Neurobiol., 119, 71-86.

Jiang, L. L., Liu, J. L., Fu, X. L., Xian, W. B., Gu, J., Liu, Y. M. et al. (2015). Long-term Efficacy of Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease: A 5-year Follow-up Study in China. Chin Med.J.(Engl.), 128, 2433-2438.

Jinsmaa, Y., Sullivan, P., Gross, D., Cooney, A., Sharabi, Y., & Goldstein, D. S. (2014). Divalent metal ions enhance DOPAL-induced oligomerization of alpha-synuclein. Neurosci.Lett., 569, 27-32.

Jowaed, A., Schmitt, I., Kaut, O., & Wullner, U. (2010). Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains. J.Neurosci., 30, 6355-6359.

Kahan, J., Urner, M., Moran, R., Flandin, G., Marreiros, A., Mancini, L. et al. (2014). Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity. Brain, 137, 1130-1144.

Kalda, A., Yu, L., Oztas, E., & Chen, J. F. (2006). Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson's disease. J.Neurol.Sci., 248, 9-15.

Karlsson, O., Berg, C., Brittebo, E. B., & Lindquist, N. G. (2009). Retention of the cyanobacterial neurotoxin beta-N-methylamino-l-alanine in melanin and neuromelanin-containing cells--a possible link between Parkinson-dementia complex and pigmentary retinopathy. Pigment Cell Melanoma Res., 22, 120-130.

Kas, A., Bottlaender, M., Gallezot, J. D., Vidailhet, M., Villafane, G., Gregoire, M. C. et al. (2009). Decrease of nicotinic receptors in the nigrostriatal system in Parkinson's disease. J.Cereb.Blood Flow Metab, 29, 1601-1608.

Kase, H., Aoyama, S., Ichimura, M., Ikeda, K., Ishii, A., Kanda, T. et al. (2003). Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson's disease. Neurology, 61, S97-100.

Kessler, I. I. (1973). Parkinson's disease perspectives on epidemiology and pathogenesis. Prev.Med., 2, 88-105.

Kessler, I. I. & Diamond, E. L. (1971). Epidemiologic studies of Parkinson's disease. I. Smoking and Parkinson's disease: a survey and explanatory hypothesis. Am.J.Epidemiol., 94, 16-25.

Kim, S. U., Park, I. H., Kim, T. H., Kim, K. S., Choi, H. B., Hong, S. H. et al. (2006). Brain transplantation of human neural stem cells transduced with tyrosine hydroxylase and GTP cyclohydrolase 1 provides functional improvement in animal models of Parkinson disease. Neuropathology., 26, 129-140.

Kirch, D. G., Alho, A. M., & Wyatt, R. J. (1988). Hypothesis: a nicotine-dopamine interaction linking smoking with Parkinson's disease and tardive dyskinesia. Cell Mol.Neurobiol., 8, 285-291.

Koga, K., Kurokawa, M., Ochi, M., Nakamura, J., & Kuwana, Y. (2000). Adenosine A(2A) receptor antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drugs in hemi-Parkinsonian rats. Eur.J.Pharmacol., 408, 249-255.

Kontopoulos, E., Parvin, J. D., & Feany, M. B. (2006). Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum.Mol.Genet., 15, 3012-3023.

Kopell, B. H. & Greenberg, B. D. (2008). Anatomy and physiology of the basal ganglia: implications for DBS in psychiatry. Neurosci.Biobehav.Rev., 32, 408-422.

Kordower, J. H., Cochran, E., Penn, R. D., & Goetz, C. G. (1991). Putative chromaffin cell survival and enhanced host-derived TH-fiber innervation following a functional adrenal medulla autograft for Parkinson's disease. Ann.Neurol., 29, 405-412.

Kumar, K. R., Djarmati-Westenberger, A., & Grunewald, A. (2011). Genetics of Parkinson's disease. Semin.Neurol., 31, 433-440.

Kumudini, N., Uma, A., Devi, Y. P., Naushad, S. M., Mridula, R., Borgohain, R. et al. (2014). Association of Parkinson's disease with altered serum levels of lead and transition metals among South Indian subjects. Indian J.Biochem.Biophys., 51, 121-126.

Kupsch, A., Oertel, W. H., Earl, C. D., & Sautter, J. (1995). Neuronal transplantation and neurotrophic factors in the treatment of Parkinson's disease--update February 1995. J.Neural Transm.Suppl, 46, 193-207.

Laing, N. (2001). Genes and brains, molecular medicine and neuropathology. Trends Mol.Med., 7, 6-7.

Lang, A. E. (2009). When and how should treatment be started in Parkinson disease? Neurology, 72, S39-S43.

Langston, J. W., Langston, E. B., & Irwin, I. (1984). MPTP-induced parkinsonism in human and non-human primates--clinical and experimental aspects. Acta Neurol.Scand.Suppl, 100, 49-54.

Lansbury, P. T., Jr. & Brice, A. (2002). Genetics of Parkinson's disease and biochemical studies of implicated gene products. Curr.Opin.Cell Biol., 14, 653-660.

Larson, P. S. (2008). Deep brain stimulation for psychiatric disorders. Neurotherapeutics., 5, 50-58.

Lechat, P. & Streichenberger, G. (1966). [Pharmacologic study of the possible anti-Parkinson effect of chlormethiazole]. Therapie, 21, 1617-1621.

Lee, J. I. (2015). The Current Status of Deep Brain Stimulation for the Treatment of Parkinson Disease in the Republic of Korea. J.Mov Disord., 8, 115-121.

Lei, Z., Jiang, Y., Li, T., Zhu, J., & Zeng, S. (2011). Signaling of glial cell line-derived neurotrophic factor and its receptor GFRalpha1 induce Nurr1 and Pitx3 to promote survival of grafted midbrain-derived neural stem cells in a rat model of Parkinson disease. J.Neuropathol.Exp.Neurol., 70, 736-747.

Lemay, S., Chouinard, S., Blanchet, P., Masson, H., Soland, V., Beuter, A. et al. (2004). Lack of efficacy of a nicotine transdermal treatment on motor and cognitive deficits in Parkinson's disease. Prog.Neuropsychopharmacol.Biol.Psychiatry, 28, 31-39.

Lezcano, E., Gomez, J. C., Lambarri, I., Bilbao, G., Pomposo, I., Rodriguez, O. et al. (2003). [Bilateral subthalamic nucleus deep-brain stimulation (STN-DBS) in Parkinson's disease: initial experience in Cruces Hospital]. Neurologia, 18, 187-195.

Liang, L., DeLong, M. R., & Papa, S. M. (2008). Inversion of dopamine responses in striatal medium spiny neurons and involuntary movements. J.Neurosci., 28, 7537-7547.

Lilleeng, B., Gjerstad, M., Baardsen, R., Dalen, I., & Larsen, J. P. (2015). The long-term development of non-motor problems after STN-DBS. Acta Neurol.Scand., 132, 251-258.

Liou, H. H., Tsai, M. C., Chen, C. J., Jeng, J. S., Chang, Y. C., Chen, S. Y. et al. (1997). Environmental risk factors and Parkinson's disease: a case-control study in Taiwan. Neurology, 48, 1583-1588.

Little, S. & Bestmann, S. (2015). Computational neurostimulation for Parkinson's disease. Prog.Brain Res., 222, 163-190.

Little, S., Pogosyan, A., Neal, S., Zavala, B., Zrinzo, L., Hariz, M. et al. (2013). Adaptive deep brain stimulation in advanced Parkinson disease. Ann.Neurol., 74, 449-457.

Little, S., Pogosyan, A., Neal, S., Zrinzo, L., Hariz, M., Foltynie, T. et al. (2014). Controlling Parkinson's disease with adaptive deep brain stimulation. J.Vis.Exp..

Liu, T. W., Ma, Z. G., Zhou, Y., & Xie, J. X. (2013). Transplantation of mouse CGR8 embryonic stem cells producing GDNF and TH protects against 6-hydroxydopamine neurotoxicity in the rat. Int.J.Biochem.Cell Biol., 45, 1265-1273.

Lu, Y., Prudent, M., Fauvet, B., Lashuel, H. A., & Girault, H. H. (2011). Phosphorylation of alpha-Synuclein at Y125 and S129 alters its metal binding properties: implications for understanding the role of alpha-Synuclein in the pathogenesis of Parkinson's Disease and related disorders. ACS Chem.Neurosci., 2, 667-675.

Luo, D., Shi, Y., Wang, J., Lin, Q., Sun, Y., Ye, K. et al. (2016). 7,8-dihydroxyflavone protects 6-OHDA and MPTP induced dopaminergic neurons degeneration through activation of TrkB in rodents. Neurosci.Lett., 620, 43-49.

Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C., & Becerril, J. J. (1987). Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson's disease. N.Engl.J.Med., 316, 831-834.

Madrazo, I., Franco-Bourland, R., Ostrosky-Solis, F., Aguilera Riestra, M. C., Madrazo, M., & Zarate, A. (1989). [Autograft of the adrenal medulla to caudate nucleus as Parkinson disease treatment: long-term clinical evaluation]. Gac.Med.Mex., 125, 385-394.

Maggio, R., Riva, M., Vaglini, F., Fornai, F., Racagni, G., & Corsini, G. U. (1997). Striatal increase of neurotrophic factors as a mechanism of nicotine protection in experimental parkinsonism. J.Neural Transm.(Vienna.), 104, 1113-1123.

Mahanthappa, N. K., Gage, F. H., & Patterson, P. H. (1990). Adrenal chromaffin cells as multipotential neurons for autografts. Prog.Brain Res., 82, 33-39.

Manson, A., Stirpe, P., & Schrag, A. (2012). Levodopa-induced-dyskinesias clinical features, incidence, risk factors, management and impact on quality of life. J.Parkinsons.Dis., 2, 189-198.

Marks, W. A., Honeycutt, J., Acosta, F., & Reed, M. (2009). Deep brain stimulation for pediatric movement disorders. Semin.Pediatr.Neurol., 16, 90-98.

Martínez-Martínez, A., Aguilar, O., & Acevedo-Triana, C. (2016). Meta-analysis of the relationship between deep brain stimulation (DBS) in patients with Parkinson´s disease and performance in evaluation tests for executive brain functions. Parkinsons.Dis., In press.

Masliah, E., Dumaop, W., Galasko, D., & Desplats, P. (2013). Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics., 8, 1030-1038.

Mayeux, R. (2003). Epidemiology of neurodegeneration. Annu.Rev.Neurosci., 26, 81-104.

McCoy, M. K., Ruhn, K. A., Blesch, A., & Tansey, M. G. (2011). TNF: a key neuroinflammatory mediator of neurotoxicity and neurodegeneration in models of Parkinson's disease. Adv.Exp.Med.Biol., 691, 539-540.

McGuire, V., Van Den Eeden, S. K., Tanner, C. M., Kamel, F., Umbach, D. M., Marder, K. et al. (2011). Association of DRD2 and DRD3 polymorphisms with Parkinson's disease in a multiethnic consortium. J.Neurol.Sci., 307, 22-29.

Mellick, G. D., Gartner, C. E., Silburn, P. A., & Battistutta, D. (2006). Passive smoking and Parkinson disease. Neurology, 67, 179-180.

Meloni, G. & Vasak, M. (2011). Redox activity of alpha-synuclein-Cu is silenced by Zn(7)-metallothionein-3. Free Radic.Biol.Med., 50, 1471-1479.

Mercuri, N. B. & Bernardi, G. (2005). The 'magic' of L-dopa: why is it the gold standard Parkinson's disease therapy? Trends Pharmacol.Sci., 26, 341-344.

Michel, A., Downey, P., Van, D., X, De, W. C., Schwarting, R., & Scheller, D. (2015). Behavioural Assessment of the A2a/NR2B Combination in the Unilateral 6-OHDA-Lesioned Rat Model: A New Method to Examine the Therapeutic Potential of Non-Dopaminergic Drugs. PLoS.One., 10, e0135949.

Miksys, S. & Tyndale, R. F. (2006). Nicotine induces brain CYP enzymes: relevance to Parkinson's disease. J.Neural Transm.Suppl, 177-180.

Mizuno, Y., Hattori, N., Kitada, T., Matsumine, H., Mori, H., Shimura, H. et al. (2001). Familial Parkinson's disease. Alpha-synuclein and parkin. Adv.Neurol., 86, 13-21.

Mottonen, T., Katisko, J., Haapasalo, J., Tahtinen, T., Saastamoinen, A., Peltola, J. et al. (2016). The Correlation between Intraoperative Microelectrode Recording and 3-Tesla MRI in Patients Undergoing ANT-DBS for Refractory Epilepsy. Stereotact.Funct.Neurosurg., 94, 86-92.

Muller, M. L. & Bohnen, N. I. (2013). Cholinergic dysfunction in Parkinson's disease. Curr.Neurol.Neurosci.Rep., 13, 377.

Munoz, A., Li, Q., Gardoni, F., Marcello, E., Qin, C., Carlsson, T. et al. (2008). Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia. Brain, 131, 3380-3394.

Murchison, A. G., Fletcher, C., & Cheeran, B. (2016). Recurrence of dyskinesia as a side-effect of mirabegron in a patient with Parkinson's disease on DBS (GPi). Parkinsonism.Relat Disord., 27, 107-108.

Nagatsu, T., Mogi, M., Ichinose, H., & Togari, A. (2000). Changes in cytokines and neurotrophins in Parkinson's disease. J.Neural Transm.Suppl, 277-290.

Nagatsu, T., Mogi, M., Ichinose, H., & Togari, A. (2000). Cytokines in Parkinson's disease. J.Neural Transm.Suppl, 143-151.

Naoi, M., Maruyama, W., Niwa, T., & Nagatsu, T. (1994). Novel toxins and Parkinson's disease: N-methylation and oxidation as metabolic bioactivation of neurotoxin. J.Neural Transm.Suppl, 41, 197-205.

Nowacki, A., Fiechter, M., Fichtner, J., Debove, I., Lachenmayer, L., Schupbach, M. et al. (2015). Using MDEFT MRI Sequences to Target the GPi in DBS Surgery. PLoS.One., 10, e0137868.

O'Keeffe, F. E., Scott, S. A., Tyers, P., O'Keeffe, G. W., Dalley, J. W., Zufferey, R. et al. (2008). Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson's disease. Brain, 131, 630-641.

O'Sullivan, D. & Pell, M. (2009). Long-term follow-up of DBS of thalamus for tremor and STN for Parkinson's disease. Brain Res.Bull., 78, 119-121.

Obeso, J. A., Rodriguez-Oroz, M. C., Goetz, C. G., Marin, C., Kordower, J. H., Rodriguez, M. et al. (2010). Missing pieces in the Parkinson's disease puzzle. Nat.Med., 16, 653-661.

Okun, M. S. (2012). Deep-brain stimulation for Parkinson's disease. N.Engl.J.Med., 367, 1529-1538.

Okun, M. S. & Foote, K. D. (2010). Parkinson's disease DBS: what, when, who and why? The time has come to tailor DBS targets. Expert.Rev.Neurother., 10, 1847-1857.

Okun, M. S., Wu, S. S., Fayad, S., Ward, H., Bowers, D., Rosado, C. et al. (2014). Acute and Chronic Mood and Apathy Outcomes from a randomized study of unilateral STN and GPi DBS. PLoS.One., 9, e114140.

Olson, L., Backlund, E. O., Ebendal, T., Freedman, R., Hamberger, B., Hansson, P. et al. (1991). Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson's disease. One-year follow-up of first clinical trial. Arch.Neurol., 48, 373-381.

Ono, Y., Nakatani, T., Sakamoto, Y., Mizuhara, E., Minaki, Y., Kumai, M. et al. (2007). Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development, 134, 3213-3225.

Pacelli, C., Giguere, N., Bourque, M. J., Levesque, M., Slack, R. S., & Trudeau, L. E. (2015). Elevated Mitochondrial Bioenergetics and Axonal Arborization Size Are Key Contributors to the Vulnerability of Dopamine Neurons. Curr.Biol., 25, 2349-2360.

Pagano, G., Ferrara, N., Brooks, D. J., & Pavese, N. (2016). Age at onset and Parkinson disease phenotype. Neurology, 86, 1400-1407.

Palacios, N., Gao, X., McCullough, M. L., Schwarzschild, M. A., Shah, R., Gapstur, S. et al. (2012). Caffeine and risk of Parkinson's disease in a large cohort of men and women. Mov Disord., 27, 1276-1282.

Perry, E. K., Perry, R. H., Smith, C. J., Dick, D. J., Candy, J. M., Edwardson, J. A. et al. (1987). Nicotinic receptor abnormalities in Alzheimer's and Parkinson's diseases. J.Neurol.Neurosurg.Psychiatry, 50, 806-809.

Prediger, R. D. (2010). Effects of caffeine in Parkinson's disease: from neuroprotection to the management of motor and non-motor symptoms. J.Alzheimers.Dis., 20 Suppl 1, S205-S220.

Priori, A., Foffani, G., Rossi, L., & Marceglia, S. (2013). Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp.Neurol., 245, 77-86.

Quik, M. (2004). Smoking, nicotine and Parkinson's disease. Trends Neurosci., 27, 561-568.

Quik, M., Huang, L. Z., Parameswaran, N., Bordia, T., Campos, C., & Perez, X. A. (2009). Multiple roles for nicotine in Parkinson's disease. Biochem.Pharmacol., 78, 677-685.

Quik, M., O'Neill, M., & Perez, X. A. (2007). Nicotine neuroprotection against nigrostriatal damage: importance of the animal model. Trends Pharmacol.Sci., 28, 229-235.

Quik, M., Perez, X. A., & Bordia, T. (2012). Nicotine as a potential neuroprotective agent for Parkinson's disease. Mov Disord., 27, 947-957.

Quik, M. & Wonnacott, S. (2011). alpha6beta2* and alpha4beta2* nicotinic acetylcholine receptors as drug targets for Parkinson's disease. Pharmacol.Rev., 63, 938-966.

Quraan, M. A., Protzner, A. B., Daskalakis, Z. J., Giacobbe, P., Tang, C. W., Kennedy, S. H. et al. (2014). EEG power asymmetry and functional connectivity as a marker of treatment effectiveness in DBS surgery for depression. Neuropsychopharmacology, 39, 1270-1281.

Rahimmi, A., Khosrobakhsh, F., Izadpanah, E., Moloudi, M. R., & Hassanzadeh, K. (2015). N-acetylcysteine prevents rotenone-induced Parkinson's disease in rat: An investigation into the interaction of parkin and Drp1 proteins. Brain Res.Bull., 113, 34-40.

Rezai, A. (2009). DBS for neurobehavioral disorders. Stereotact.Funct.Neurosurg., 87, 267.

Reznikoff, G., Manaker, S., Parsons, B., Rhodes, C. H., & Rainbow, T. C. (1985). Similar distribution of monoamine oxidase (MAO) and parkinsonian toxin (MPTP) binding sites in human brain. Neurology, 35, 1415-1419.

Rinne, J. O., Myllykyla, T., Lonnberg, P., & Marjamaki, P. (1991). A postmortem study of brain nicotinic receptors in Parkinson's and Alzheimer's disease. Brain Res., 547, 167-170.

Rodriguez-Oroz, M. C., Moro, E., & Krack, P. (2012). Long-term outcomes of surgical therapies for Parkinson's disease. Mov Disord., 27, 1718-1728.

Rodriguez-Oroz, M. C., Obeso, J. A., Lang, A. E., Houeto, J. L., Pollak, P., Rehncrona, S. et al. (2005). Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up. Brain, 128, 2240-2249.

Ross, G. W., Abbott, R. D., Petrovitch, H., Morens, D. M., Grandinetti, A., Tung, K. H. et al. (2000). Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA, 283, 2674-2679.

Rubio-Osornio, M., Montes, S., Heras-Romero, Y., Guevara, J., Rubio, C., Aguilera, P. et al. (2013). Induction of ferroxidase enzymatic activity by copper reduces MPP+-evoked neurotoxicity in rats. Neurosci.Res., 75, 250-255.

Sakas, D. E., Kouyialis, A. T., Boviatsis, E. J., Panourias, I. G., Stathis, P., & Tagaris, G. (2007). Technical aspects and considerations of deep brain stimulation surgery for movement disorders. Acta Neurochir.Suppl, 97, 163-170.

Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E. et al. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell, 167, 1469-1480.

Sawle, G. V., Bloomfield, P. M., Bjorklund, A., Brooks, D. J., Brundin, P., Leenders, K. L. et al. (1992). Transplantation of fetal dopamine neurons in Parkinson's disease: PET [18F]6-L-fluorodopa studies in two patients with putaminal implants. Ann.Neurol., 31, 166-173.

Schapira, A. H. (2013). Recent developments in biomarkers in Parkinson disease. Curr.Opin.Neurol., 26, 395-400.

Schober, A. (2004). Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res., 318, 215-224.

Schwarzschild, M. A., Chen, J. F., & Ascherio, A. (2002). Caffeinated clues and the promise of adenosine A(2A) antagonists in PD. Neurology, 58, 1154-1160.

Semchuk, K. M., Love, E. J., & Lee, R. G. (1991). Parkinson's disease and exposure to rural environmental factors: a population based case-control study. Can.J.Neurol.Sci., 18, 279-286.

Sershen, H., Hashim, A., & Lajtha, A. (1987). Behavioral and biochemical effects of nicotine in an MPTP-induced mouse model of Parkinson's disease. Pharmacol.Biochem.Behav., 28, 299-303.

Sherer, T. B., Betarbet, R., Stout, A. K., Lund, S., Baptista, M., Panov, A. V. et al. (2002). An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J.Neurosci., 22, 7006-7015.

Shimoke, K. & Chiba, H. (2001). Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for Parkinson's disease. J.Neurosci.Res., 63, 402-409.

Shoulson, I., Oakes, D., Fahn, S., Lang, A., Langston, J. W., LeWitt, P. et al. (2002). Impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson's disease: a randomized placebo-controlled extension of the deprenyl and tocopherol antioxidative therapy of parkinsonism trial. Ann.Neurol., 51, 604-612.

Singer, T. P., Castagnoli, N., Jr., Ramsay, R. R., & Trevor, A. J. (1987). Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J.Neurochem., 49, 1-8.

Singer, T. P. & Ramsay, R. R. (1990). Mechanism of the neurotoxicity of MPTP. An update. FEBS Lett., 274, 1-8.

Soto-Otero, R., Mendez-Alvarez, E., Sanchez-Sellero, I., Cruz-Landeira, A., & Lopez-Rivadulla, L. M. (2001). Reduction of rat brain levels of the endogenous dopaminergic proneurotoxins 1,2,3,4-tetrahydroisoquinoline and 1,2,3,4-tetrahydro-beta-carboline by cigarette smoke. Neurosci.Lett., 298, 187-190.

Stefani, A., Fedele, E., Vitek, J., Pierantozzi, M., Galati, S., Marzetti, F. et al. (2011). The clinical efficacy of L-DOPA and STN-DBS share a common marker: reduced GABA content in the motor thalamus. Cell Death.Dis., 2, e154.

Stegemoller, E. L., Vallabhajosula, S., Haq, I., Hwynn, N., Hass, C. J., & Okun, M. S. (2013). Selective use of low frequency stimulation in Parkinson's disease based on absence of tremor. NeuroRehabilitation., 33, 305-312.

Su, F., Wang, J., Deng, B., Wei, X. L., Chen, Y. Y., Liu, C. et al. (2015). Adaptive control of Parkinson's state based on a nonlinear computational model with unknown parameters. Int.J.Neural Syst., 25, 1450030.

Tanner, C. M. (1989). The role of environmental toxins in the etiology of Parkinson's disease. Trends Neurosci., 12, 49-54.

Thiriez, C., Villafane, G., Grapin, F., Fenelon, G., Remy, P., & Cesaro, P. (2011). Can nicotine be used medicinally in Parkinson's disease? Expert.Rev.Clin.Pharmacol., 4, 429-436.

Tong, Q., Wu, L., Jiang, T., Ou, Z., Zhang, Y., & Zhu, D. (2016). Inhibition of endoplasmic reticulum stress-activated IRE1alpha-TRAF2-caspase-12 apoptotic pathway is involved in the neuroprotective effects of telmisartan in the rotenone rat model of Parkinson's disease. Eur.J.Pharmacol., 776, 106-115.

Udupa, K. & Chen, R. (2015). The mechanisms of action of deep brain stimulation and ideas for the future development. Prog.Neurobiol., 133, 27-49.

Vallabhajosula, S., Haq, I. U., Hwynn, N., Oyama, G., Okun, M., Tillman, M. D. et al. (2015). Low-frequency versus high-frequency subthalamic nucleus deep brain stimulation on postural control and gait in Parkinson's disease: a quantitative study. Brain Stimul., 8, 64-75.

Van, N. B., Raedt, R., Delbeke, J., Wadman, W. J., Boon, P., & Vonck, K. (2015). In search of optimal DBS paradigms to treat epilepsy: bilateral versus unilateral hippocampal stimulation in a rat model for temporal lobe epilepsy. Brain Stimul., 8, 192-199.

Varani, K., Vincenzi, F., Tosi, A., Gessi, S., Casetta, I., Granieri, G. et al. (2010). A2A adenosine receptor overexpression and functionality, as well as TNF-alpha levels, correlate with motor symptoms in Parkinson's disease. FASEB J., 24, 587-598.

Vieregge, A., Sieberer, M., Jacobs, H., Hagenah, J. M., & Vieregge, P. (2001). Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study. Neurology, 57, 1032-1035.

Villafane, G., Cesaro, P., Rialland, A., Baloul, S., Azimi, S., Bourdet, C. et al. (2007). Chronic high dose transdermal nicotine in Parkinson's disease: an open trial. Eur.J.Neurol., 14, 1313-1316.

Visser-Vandewalle, V., Temel, Y., van der Linden, C., Ackermans, L., & Beuls, E. (2004). Deep brain stimulation in movement disorders. The applications reconsidered. Acta Neurol.Belg., 104, 33-36.

Wakeman, D. R., Redmond, D. E., Jr., Dodiya, H. B., Sladek, J. R., Jr., Leranth, C., Teng, Y. D. et al. (2014). Human neural stem cells survive long term in the midbrain of dopamine-depleted monkeys after GDNF overexpression and project neurites toward an appropriate target. Stem Cells Transl.Med., 3, 692-701.

Wang, Y., Lee, J. W., Oh, G., Grady, S. R., McIntosh, J. M., Brunzell, D. H. et al. (2014). Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function alpha6* nAChRs. J.Neurochem., 129, 315-327.

Waxman, E. A. & Giasson, B. I. (2011). Induction of intracellular tau aggregation is promoted by alpha-synuclein seeds and provides novel insights into the hyperphosphorylation of tau. J.Neurosci., 31, 7604-7618.

Wenker, S. D., Casalia, M., Candedo, V. C., Casabona, J. C., & Pitossi, F. J. (2015). Cell reprogramming and neuronal differentiation applied to neurodegenerative diseases: Focus on Parkinson's disease. FEBS Lett., 589, 3396-3406.

Whetten-Goldstein, K., Sloan, F., Kulas, E., Cutson, T., & Schenkman, M. (1997). The burden of Parkinson's disease on society, family, and the individual. J.Am.Geriatr.Soc., 45, 844-849.

Widner, H., Tetrud, J., Rehncrona, S., Snow, B., Brundin, P., Gustavii, B. et al. (1992). Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N.Engl.J.Med., 327, 1556-1563.

Williams, N. R., Hopkins, T. R., Short, E. B., Sahlem, G. L., Snipes, J., Revuelta, G. J. et al. (2016). Reward circuit DBS improves Parkinson's gait along with severe depression and OCD. Neurocase., 22, 201-204.

Willis, A. W. (2013). Parkinson disease in the elderly adult. Mo.Med., 110, 406-410.

Willis, A. W., Evanoff, B. A., Lian, M., Galarza, A., Wegrzyn, A., Schootman, M. et al. (2010). Metal emissions and urban incident Parkinson disease: a community health study of Medicare beneficiaries by using geographic information systems. Am.J.Epidemiol., 172, 1357-1363.

Willis, A. W., Evanoff, B. A., Lian, M., Galarza, A., Wegrzyn, A., Schootman, M. et al. (2010). Metal emissions and urban incident Parkinson disease: a community health study of Medicare beneficiaries by using geographic information systems. Am.J.Epidemiol., 172, 1357-1363.

Xu, K., Xu, Y. H., Chen, J. F., & Schwarzschild, M. A. (2010). Neuroprotection by caffeine: time course and role of its metabolites in the MPTP model of Parkinson's disease. Neuroscience, 167, 475-481.

Yang, A. I., Vanegas, N., Lungu, C., & Zaghloul, K. A. (2014). Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson's disease. J.Neurosci., 34, 12816-12827.

Yin, G., Lopes da, F. T., Eisbach, S. E., Anduaga, A. M., Breda, C., Orcellet, M. L. et al. (2014). alpha-Synuclein interacts with the switch region of Rab8a in a Ser129 phosphorylation-dependent manner. Neurobiol.Dis., 70, 149-161.

Yokel, R. A. (2006). Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J.Alzheimers.Dis., 10, 223-253.

Zhang, Z., Cui, W., Li, G., Yuan, S., Xu, D., Hoi, M. P. et al. (2012). Baicalein protects against 6-OHDA-induced neurotoxicity through activation of Keap1/Nrf2/HO-1 and involving PKCalpha and PI3K/AKT signaling pathways. J.Agric.Food Chem., 60, 8171-8182.

Zhou, W., Bercury, K., Cummiskey, J., Luong, N., Lebin, J., & Freed, C. R. (2011). Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J.Biol.Chem., 286, 14941-14951.

Zhou, Y., Zhang, Y., Li, J., Lv, F., Zhao, Y., Duan, D. et al. (2012). A comprehensive study on long-term injury to nigral dopaminergic neurons following intracerebroventricular injection of lipopolysaccharide in rats. J.Neurochem., 123, 771-780.

Zhu, B., Caldwell, M., & Song, B. (2016). Development of stem cell-based therapies for Parkinson's disease. Int.J.Neurosci., 126, 955-962.
Cómo citar
Hurtado, F., Cardenas, M. A. N., Cardenas, F., & León, L. A. (2017). La Enfermedad de Parkinson: Etiología, Tratamientos y Factores Preventivos. Universitas Psychologica, 15(5).

Artículos más leídos del mismo autor/a