Componentes cognitivos del sistema de aproximación numérica y la fluidez de cálculo en niños de educación primaria
HTML Full Text
PDF
XML

Palabras clave

cognición numérica
fluidez de cálculo
fracci´´on de Weber
SAN
educación primaria

Cómo citar

Componentes cognitivos del sistema de aproximación numérica y la fluidez de cálculo en niños de educación primaria. (2019). Universitas Psychologica, 18(3), 1-14. https://doi.org/10.11144/Javeriana.upsy18-3.ccsa
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

En los últimos años, se ha investigado la relación existente entre los dos sistemas cognitivos que contribuyen al procesamiento de cantidades (el sistema de aproximación numérica (SAN) y el (SEN) sistema de exactitud numérica) y su influencia en el rendimiento y dificultades de aprendizaje de las matemáticas. En este estudio, se investiga la relación entre la precisión del SAN y el rendimiento matemático en una prueba de fluidez de cálculo simbólico en alumnado de segundo y tercer ciclo de educación primaria (3.º a 6.º). Un total de 229 estudiantes fueron evaluados con una prueba de precisión del SAN, consistente en una tarea de comparación no simbólica de cantidades y una prueba de fluidez de cálculo. Los resultados descriptivos se encuentran dentro de lo esperado con respecto al carácter evolutivo de las variables de estimación y fluidez de cálculo. El análisis correlacional mostró que existe una baja correlación entre fluidez de cálculo y comparación de magnitudes en 3.° (p < 0.05) que desapareció en cursos posteriores (p > 0.05).

HTML Full Text
PDF
XML

Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2008). Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition, 11(3), 495-503. https://doi.org/10.1007/s10071-008-0140-9

Barth, H., Beckmann, L., & Spelke, E. S. (2008). Nonsymbolic, approximate arithmetic in children: Abstract addition prior to instruction. Developmental Psychology, 44(5), 1466-1477. https://doi.org/10.1037/a0013046

Berch, D. B. (2005). Making sense of number sense: implications for children with mathematical disabilities. Journal of Learning Disabilities, 38(4), 333-339. https://doi.org/10.1177/00222194050380040901

Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42, 189-201. https://doi.org/10.1037/0012-1649.41.6.189

Brannon, E. M., Jordan, K. E., & Jones, S. M. (2010). Behavioral signatures of numerical discrimination. En M. L. Platt & A. A. Ghazanfar (Eds.), Primate neuroethology (pp. 144-159). Oxford, UK: Oxford. Oxford University Press.

Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17, 401-406. https://doi.org/10.1111/j.1467-9280.2006.01719.x

Castronovo, J., & Göbel, S. M. (2012). Impact of high mathematics education on the number sense. PLoS ONE, 7(4), e33832. https://doi.org/10.1371/journal.pone.0033832

Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163-172. https://doi.org/10.1016/j.actpsy.2014.01.016

Cordes, S., Gallistel, C. R., Gelman, R., & Latham, P. (2007). Nonverbal arithmetic in humans: Light from noise. Attention, Perception, & Psychophysics, 69(7), 1185-1203. https://doi.org/10.3758/BF03193955

Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychonomic Bulletin and Review, 8, 698-707. https://doi.org/10.3758/BF03196206

De Smedt, B., Verschaffel, L., & Ghesquiere, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469-479. https://doi.org/10.1016/j.jecp.2009.01.010

DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00068

Dehaene, S. (2003). The neural basis for the Weber-Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145-147. https://doi.org/10.1016/s1364-6613(03)00055-x

Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2010). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study: Mathematical learning disabilities in kindergarten. British Journal of
Educational Psychology, 82(1), 64-81. https://doi.org/10.1348/2044-8279.002002

Diamantopoulou, S., Pina, V., Valero-García, A. V., González-Salinas, C., & Fuentes, L. J. (2012). Validation of the Spanish version of the Woodcock Johnson mathematics achievement tests for children aged six to thirteen. Journal of Psychoeducational Assessment, 30, 466-477. https://doi.org/10.1177/0734282912437531

Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53-72. https://doi.org/10.1016/j.jecp.2014.01.013

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314. https://doi.org/10.1016/j.tics.2004.05.002

Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15. https://doi.org/10.1177/00222194040370010201

Fonseca-Estupiñan, G. P., Rodríguez-Barreto, L. C., & Parra-Pulido, J. H. (2016). Relación entre funciones ejecutivas y rendimiento académico por asignaturas en escolares de 6 a 12 años. Revista hacia la Promoción de la Salud, 21(2). https://doi.org/10.17151/hpsal.2016.21.2.4

Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.

Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic arithmetic without instruction. Nature, 447, 589-591. https://doi.org/10.1038/nature05850

Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394-406. https://doi.org/10.1016/j.cognition.2010.02.002

Ginsburg, H., Baroody, A. J., del Río, M. C. N., & Guerra, I. L. (2007). Tema-3: test de competencia matemática básica. Madrid: Tea.

Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457-1465. https://doi.org/10.1037/a0012682

Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116-11120. https://doi.org/10.1073/pnas.1200196109

Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668. https://doi.org/10.1038/nature07246

Halberda, J., & Odic, D. (2014). The precision and internal confidence of our approximate number thoughts. En D. C. Geary, D. Berch & K. Koepke (Eds.), Evolutionary origins and early development of number processing (pp. 305-333). Londres: Academic Press.

Halberda, J., Sires, S. F., & Feigenson, L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science, 17(7), 572-576. https://doi.org/10.1111/j.1467-9280.2006.01746.x

Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29. https://doi.org/10.1016/j.jecp.2008.04.001

Hyde, C., & Spelke, E S. (2009). All numbers are not equal: An electrophysiological investigation of small and large number representations. Journal Cognitive Neuroscience, 21(6), 1039-1053. https://doi.org/10.1162/jocn.2009.21090

Iglesias-Sarmiento, V., & Deaño, M. (2011). Cognitive processing and mathematical achievement: A study with schoolchildren between fourth and sixth grade of primary education. Journal of Learning Disabilities, 44(6), 570-583. https://doi.org/10.1177/0022219411400749

Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6), 1222-1229. https://doi.org/10.3758/ s13423-011-0154-1

Iuculano, T., Tang, J., Hall, C. W. B., & Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental Science, 11(5), 669-680. https://doi.org/10.1111/j.1467-7687.2008.00716.x

Libertus, M. E., & Brannon, E. M. (2009). Behavioral and neural basis of number sense in infancy: Number sense in infancy. Current Directions in Psychological Science, 18(6), 346-351. https://doi.org/10.1111/j.1467-8721.2009.01665.x

Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy: Number discrimination in infants. Developmental Science, 13(6), 900-906. https://doi.org/10.1111/j.1467-7687.2009.00948.x

Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the Approximate Number System correlates with school math ability. Developmental Science, 14(6), 1292-1300. https://doi.org/10.1111/j.1467-7687.2011.01080.x

Libertus, M. E., Pruitt, L. B., Woldorff, M. G., & Brannon, E. M. (2009). Induced alpha-band oscillations reflect ratio-dependent number discrimination in the infant brain. Journal of Cognitive Neuroscience, 21(12), 2398-2406. https://doi.org/10.1162/jocn.2008.21162

Libertus, M. E., Woldorff, M. G., & Brannon, E. M. (2007). Electrophysiological evidence for notation independence in numerical processing. Behavioral and Brain Functions, 3(1), 1. https://doi.org/10.1186/1744-9081-3-1

Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense. Large-number discrimination in human infants. Psychological Science, 14(5), 396-401. https://doi.org/10.1111/1467-9280.01453

Lourenco, S. F., & Bonny, J. W. (2017). Representations of numerical and non-numerical magnitude both contribute to mathematical competence in children. Developmental Science, 20, e12418. https://doi.org/10.1111/desc.12418

Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121, 256-261. https://doi.org/10.1016/j.cognition.2011.07.009

Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17(5), 714-726. https://doi.org/10.1111/desc.12152

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia): Impaired numerical acuity contributes to MLD. Child Development, 82(4), 1224-1237. https://doi.org/10.1111/j.1467-8624.2011.01608.x

Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185-208. https://doi.org/10.1146/annurev.neuro.051508.135550

Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PLoS ONE, 8(7), e67918. https://doi.org/10.1371/journal.pone.0067918

Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103, 490-502. https://doi.org/10.1016/j.jecp.2009.02.003

Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of approximate number and area representations. Developmental Psychology, 49(6), 1103-1112. https://doi.org/10.1037/a0029472

Park, J., & Brannon, E. M. (2013). Training the Approximate Number System improves math proficiency. Psychological Science, 24(10), 2013-2019. https://doi.org/10.1177/0956797613482944

Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., … Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41. https://doi.org/10.1016/j.cognition.2010.03.012

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547-555. https://doi.org/10.1016/j.neuron.2004.10.014

Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499-503. https://doi.org/10.1126/science.1102085

Pinel, J. P. (2009). Biopsychology. Nueva York: Pearson.

Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140, 50-57. https://doi.org/10.1016/ j.actpsy.2012.02.008

Rousselle, L., & Noël, M. -P. (2008). The development of automatic numerosity processing in preschoolers: Evidence for numerosity-perceptual interference. Developmental Psychology, 44(2), 544-560. https://doi.org/10.1037/0012-1649.44.2.544

Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30, 344-357. https://doi.org/10.1111/j.2044-835X.2011.02048.x

Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. The Quarterly Journal of Experimental Psychology, 67(2), 271-280. https://doi.org/10.1080/17470218.2013.803581

Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372. https://doi.org/10.1111/desc.12372

Schmidt, F. L., & Hunter, J. E. (1996). Measurement error in psychological research: Lessons from 26 research scenarios. Psychological Methods, 1(2), 199-223. https://doi.org/10.1037/1082-989X.1.2.199

Star, J. R., & Rittle-Johnson, B. (2009). It pays to compare: An experimental study on computational estimation. Journal of Experimental Child Psychology, 102, 408-426. https://doi.org/10.1016/j.jecp.2008.11.004

Szkudlarek, E., & Brannon, E. M. (2017). Does the Approximate Number System serve as a foundation for symbolic mathematics? Language Learning and Development, 13(2), 171-190. https://doi.org/10.1080/15475441.2016.1263573

Toll, S. W., Van Viersen, S., Kroesbergen, E. H., & Van Luit, J. E. (2015). The development of (non-) symbolic comparison skills throughout kindergarten and their relations with basic mathematical skills. Learning and Individual Differences, 38, 10-17. https://doi.org/10.1016/j.lindif.2014.12.006

Van Daal, V., Van der Leij, A., & Adèr, H. (2013). Specificity and overlap in skills underpinning reading and arithmetical fluency. Reading and Writing, 26, 1009-1030. https://doi.org/10.1007/s11145-012-9404-5

Van der Sluis, S., de Jong, P. F., & van der Leij, A. (2007). Executive functioning in children, and its relations with reasoning, reading, and arithmetic. Intelligence, 35, 427-449. https://doi.org/10.1016/j.intell.2006.09.001

von Hagen, A., Cuadro, A., & Giloca, V. (2017). La construcción de hechos numéricos básicos: incidencia del sexo, curso y nivel socioeconómico del alumno. Ciencias Psicológicas, 11(2), 67-76. https://doi.org/10.22235/cp.v11i2.1348

Wechsler, D. (2005). Escala de inteligencia de Wechsler para niños-IV. Madrid: TEA.

Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 20. https://doi.org/10.1186/1744-9081-2-20

Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11. https://doi.org/10.1016/S0010-0277(99)00066-9

Esta revista científica se encuentra registrada bajo la licencia Creative Commons Reconocimiento 4.0 Internacional. Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente en formato digital, siempre que se reconozca el nombre de los autores y a la Pontificia Universidad Javeriana. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, para cualquier finalidad (incluso comercial), siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios. La Pontificia Universidad Javeriana no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. El aval sobre la intervención de la obra (revisión, corrección de estilo, traducción, diagramación) y su posterior divulgación se otorga mediante una licencia de uso y no a través de una cesión de derechos, lo que representa que la revista y la Pontificia Universidad Javeriana se eximen de cualquier responsabilidad que se pueda derivar de una mala práctica ética por parte de los autores. En consecuencia de la protección brindada por la licencia de uso, la revista no se encuentra en la obligación de publicar retractaciones o modificar la información ya publicada, a no ser que la errata surja del proceso de gestión editorial. La publicación de contenidos en esta revista no representa regalías para los contribuyentes.