##plugins.themes.bootstrap3.article.main##


Manuel Aguilar Villagrán https://orcid.org/0000-0001-8887-7701

Estíbaliz Aragón Mendizábal https://orcid.org/0000-0002-0440-5705

José Ignacio Navarro Guzmán https://orcid.org/0000-0002-0738-2641

Resumen

En los últimos años, se ha investigado la relación existente entre los dos sistemas cognitivos que contribuyen al procesamiento de cantidades (el sistema de aproximación numérica (SAN) y el (SEN) sistema de exactitud numérica) y su influencia en el rendimiento y dificultades de aprendizaje de las matemáticas. En este estudio, se investiga la relación entre la precisión del SAN y el rendimiento matemático en una prueba de fluidez de cálculo simbólico en alumnado de segundo y tercer ciclo de educación primaria (3.º a 6.º). Un total de 229 estudiantes fueron evaluados con una prueba de precisión del SAN, consistente en una tarea de comparación no simbólica de cantidades y una prueba de fluidez de cálculo. Los resultados descriptivos se encuentran dentro de lo esperado con respecto al carácter evolutivo de las variables de estimación y fluidez de cálculo. El análisis correlacional mostró que existe una baja correlación entre fluidez de cálculo y comparación de magnitudes en 3.° (p < 0.05) que desapareció en cursos posteriores (p > 0.05).

##plugins.themes.bootstrap3.article.details##

Keywords

cognición numérica, fluidez de cálculo, fracci´´on de Weber, SAN, educación primaria

References
Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2008). Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition, 11(3), 495-503. https://doi.org/10.1007/s10071-008-0140-9

Barth, H., Beckmann, L., & Spelke, E. S. (2008). Nonsymbolic, approximate arithmetic in children: Abstract addition prior to instruction. Developmental Psychology, 44(5), 1466-1477. https://doi.org/10.1037/a0013046

Berch, D. B. (2005). Making sense of number sense: implications for children with mathematical disabilities. Journal of Learning Disabilities, 38(4), 333-339. https://doi.org/10.1177/00222194050380040901

Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42, 189-201. https://doi.org/10.1037/0012-1649.41.6.189

Brannon, E. M., Jordan, K. E., & Jones, S. M. (2010). Behavioral signatures of numerical discrimination. En M. L. Platt & A. A. Ghazanfar (Eds.), Primate neuroethology (pp. 144-159). Oxford, UK: Oxford. Oxford University Press.

Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17, 401-406. https://doi.org/10.1111/j.1467-9280.2006.01719.x

Castronovo, J., & Göbel, S. M. (2012). Impact of high mathematics education on the number sense. PLoS ONE, 7(4), e33832. https://doi.org/10.1371/journal.pone.0033832

Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163-172. https://doi.org/10.1016/j.actpsy.2014.01.016

Cordes, S., Gallistel, C. R., Gelman, R., & Latham, P. (2007). Nonverbal arithmetic in humans: Light from noise. Attention, Perception, & Psychophysics, 69(7), 1185-1203. https://doi.org/10.3758/BF03193955

Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychonomic Bulletin and Review, 8, 698-707. https://doi.org/10.3758/BF03196206

De Smedt, B., Verschaffel, L., & Ghesquiere, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469-479. https://doi.org/10.1016/j.jecp.2009.01.010

DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00068

Dehaene, S. (2003). The neural basis for the Weber-Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145-147. https://doi.org/10.1016/s1364-6613(03)00055-x

Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2010). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study: Mathematical learning disabilities in kindergarten. British Journal of
Educational Psychology, 82(1), 64-81. https://doi.org/10.1348/2044-8279.002002

Diamantopoulou, S., Pina, V., Valero-García, A. V., González-Salinas, C., & Fuentes, L. J. (2012). Validation of the Spanish version of the Woodcock Johnson mathematics achievement tests for children aged six to thirteen. Journal of Psychoeducational Assessment, 30, 466-477. https://doi.org/10.1177/0734282912437531

Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53-72. https://doi.org/10.1016/j.jecp.2014.01.013

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314. https://doi.org/10.1016/j.tics.2004.05.002

Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15. https://doi.org/10.1177/00222194040370010201

Fonseca-Estupiñan, G. P., Rodríguez-Barreto, L. C., & Parra-Pulido, J. H. (2016). Relación entre funciones ejecutivas y rendimiento académico por asignaturas en escolares de 6 a 12 años. Revista hacia la Promoción de la Salud, 21(2). https://doi.org/10.17151/hpsal.2016.21.2.4

Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.

Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic arithmetic without instruction. Nature, 447, 589-591. https://doi.org/10.1038/nature05850

Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394-406. https://doi.org/10.1016/j.cognition.2010.02.002

Ginsburg, H., Baroody, A. J., del Río, M. C. N., & Guerra, I. L. (2007). Tema-3: test de competencia matemática básica. Madrid: Tea.

Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457-1465. https://doi.org/10.1037/a0012682

Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116-11120. https://doi.org/10.1073/pnas.1200196109

Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668. https://doi.org/10.1038/nature07246

Halberda, J., & Odic, D. (2014). The precision and internal confidence of our approximate number thoughts. En D. C. Geary, D. Berch & K. Koepke (Eds.), Evolutionary origins and early development of number processing (pp. 305-333). Londres: Academic Press.

Halberda, J., Sires, S. F., & Feigenson, L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science, 17(7), 572-576. https://doi.org/10.1111/j.1467-9280.2006.01746.x

Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29. https://doi.org/10.1016/j.jecp.2008.04.001

Hyde, C., & Spelke, E S. (2009). All numbers are not equal: An electrophysiological investigation of small and large number representations. Journal Cognitive Neuroscience, 21(6), 1039-1053. https://doi.org/10.1162/jocn.2009.21090

Iglesias-Sarmiento, V., & Deaño, M. (2011). Cognitive processing and mathematical achievement: A study with schoolchildren between fourth and sixth grade of primary education. Journal of Learning Disabilities, 44(6), 570-583. https://doi.org/10.1177/0022219411400749

Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6), 1222-1229. https://doi.org/10.3758/ s13423-011-0154-1

Iuculano, T., Tang, J., Hall, C. W. B., & Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental Science, 11(5), 669-680. https://doi.org/10.1111/j.1467-7687.2008.00716.x

Libertus, M. E., & Brannon, E. M. (2009). Behavioral and neural basis of number sense in infancy: Number sense in infancy. Current Directions in Psychological Science, 18(6), 346-351. https://doi.org/10.1111/j.1467-8721.2009.01665.x

Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy: Number discrimination in infants. Developmental Science, 13(6), 900-906. https://doi.org/10.1111/j.1467-7687.2009.00948.x

Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the Approximate Number System correlates with school math ability. Developmental Science, 14(6), 1292-1300. https://doi.org/10.1111/j.1467-7687.2011.01080.x

Libertus, M. E., Pruitt, L. B., Woldorff, M. G., & Brannon, E. M. (2009). Induced alpha-band oscillations reflect ratio-dependent number discrimination in the infant brain. Journal of Cognitive Neuroscience, 21(12), 2398-2406. https://doi.org/10.1162/jocn.2008.21162

Libertus, M. E., Woldorff, M. G., & Brannon, E. M. (2007). Electrophysiological evidence for notation independence in numerical processing. Behavioral and Brain Functions, 3(1), 1. https://doi.org/10.1186/1744-9081-3-1

Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense. Large-number discrimination in human infants. Psychological Science, 14(5), 396-401. https://doi.org/10.1111/1467-9280.01453

Lourenco, S. F., & Bonny, J. W. (2017). Representations of numerical and non-numerical magnitude both contribute to mathematical competence in children. Developmental Science, 20, e12418. https://doi.org/10.1111/desc.12418

Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121, 256-261. https://doi.org/10.1016/j.cognition.2011.07.009

Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17(5), 714-726. https://doi.org/10.1111/desc.12152

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia): Impaired numerical acuity contributes to MLD. Child Development, 82(4), 1224-1237. https://doi.org/10.1111/j.1467-8624.2011.01608.x

Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185-208. https://doi.org/10.1146/annurev.neuro.051508.135550

Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PLoS ONE, 8(7), e67918. https://doi.org/10.1371/journal.pone.0067918

Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103, 490-502. https://doi.org/10.1016/j.jecp.2009.02.003

Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of approximate number and area representations. Developmental Psychology, 49(6), 1103-1112. https://doi.org/10.1037/a0029472

Park, J., & Brannon, E. M. (2013). Training the Approximate Number System improves math proficiency. Psychological Science, 24(10), 2013-2019. https://doi.org/10.1177/0956797613482944

Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., … Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41. https://doi.org/10.1016/j.cognition.2010.03.012

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547-555. https://doi.org/10.1016/j.neuron.2004.10.014

Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499-503. https://doi.org/10.1126/science.1102085

Pinel, J. P. (2009). Biopsychology. Nueva York: Pearson.

Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140, 50-57. https://doi.org/10.1016/ j.actpsy.2012.02.008

Rousselle, L., & Noël, M. -P. (2008). The development of automatic numerosity processing in preschoolers: Evidence for numerosity-perceptual interference. Developmental Psychology, 44(2), 544-560. https://doi.org/10.1037/0012-1649.44.2.544

Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30, 344-357. https://doi.org/10.1111/j.2044-835X.2011.02048.x

Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. The Quarterly Journal of Experimental Psychology, 67(2), 271-280. https://doi.org/10.1080/17470218.2013.803581

Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372. https://doi.org/10.1111/desc.12372

Schmidt, F. L., & Hunter, J. E. (1996). Measurement error in psychological research: Lessons from 26 research scenarios. Psychological Methods, 1(2), 199-223. https://doi.org/10.1037/1082-989X.1.2.199

Star, J. R., & Rittle-Johnson, B. (2009). It pays to compare: An experimental study on computational estimation. Journal of Experimental Child Psychology, 102, 408-426. https://doi.org/10.1016/j.jecp.2008.11.004

Szkudlarek, E., & Brannon, E. M. (2017). Does the Approximate Number System serve as a foundation for symbolic mathematics? Language Learning and Development, 13(2), 171-190. https://doi.org/10.1080/15475441.2016.1263573

Toll, S. W., Van Viersen, S., Kroesbergen, E. H., & Van Luit, J. E. (2015). The development of (non-) symbolic comparison skills throughout kindergarten and their relations with basic mathematical skills. Learning and Individual Differences, 38, 10-17. https://doi.org/10.1016/j.lindif.2014.12.006

Van Daal, V., Van der Leij, A., & Adèr, H. (2013). Specificity and overlap in skills underpinning reading and arithmetical fluency. Reading and Writing, 26, 1009-1030. https://doi.org/10.1007/s11145-012-9404-5

Van der Sluis, S., de Jong, P. F., & van der Leij, A. (2007). Executive functioning in children, and its relations with reasoning, reading, and arithmetic. Intelligence, 35, 427-449. https://doi.org/10.1016/j.intell.2006.09.001

von Hagen, A., Cuadro, A., & Giloca, V. (2017). La construcción de hechos numéricos básicos: incidencia del sexo, curso y nivel socioeconómico del alumno. Ciencias Psicológicas, 11(2), 67-76. https://doi.org/10.22235/cp.v11i2.1348

Wechsler, D. (2005). Escala de inteligencia de Wechsler para niños-IV. Madrid: TEA.

Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 20. https://doi.org/10.1186/1744-9081-2-20

Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11. https://doi.org/10.1016/S0010-0277(99)00066-9
Cómo citar
Aguilar Villagrán, M., Aragón Mendizábal, E., & Navarro Guzmán, J. (2019). Componentes cognitivos del sistema de aproximación numérica y la fluidez de cálculo en niños de educación primaria. Universitas Psychologica, 18(3), 1-14. https://doi.org/10.11144/Javeriana.upsy18-3.ccsa
Sección
Artículos
Artículos más leídos del mismo autor/a