Abstract
The relationship between the two cognitive systems that contribute to quantity processing (the Approximate Number System -ANS - and the Symbolic Number System -SNS-) and their influence on mathematical performance and learning difficulties has been investigated in recent years. This study investigates the relationship between SAN accuracy and mathematical performance in a symbolic calculus fluency test in second and third cycle primary school students (3rd to 6th grades). A total of 229 students were assessed with a SAN accuracy test, consisting of a non-symbolic comparison of quantities and a computational fluency test. The descriptive results are within what is expected with respect to the evolutionary character of the estimation and calculation fluidity variables. The correlational analysis showed that there is a low correlation between calculation fluidity and comparison of magnitudes in third (p < 0.05) that disappeared in subsequent courses (p > 0.05).
Barth, H., Beckmann, L., & Spelke, E. S. (2008). Nonsymbolic, approximate arithmetic in children: Abstract addition prior to instruction. Developmental Psychology, 44(5), 1466-1477. https://doi.org/10.1037/a0013046
Berch, D. B. (2005). Making sense of number sense: implications for children with mathematical disabilities. Journal of Learning Disabilities, 38(4), 333-339. https://doi.org/10.1177/00222194050380040901
Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42, 189-201. https://doi.org/10.1037/0012-1649.41.6.189
Brannon, E. M., Jordan, K. E., & Jones, S. M. (2010). Behavioral signatures of numerical discrimination. En M. L. Platt & A. A. Ghazanfar (Eds.), Primate neuroethology (pp. 144-159). Oxford, UK: Oxford. Oxford University Press.
Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17, 401-406. https://doi.org/10.1111/j.1467-9280.2006.01719.x
Castronovo, J., & Göbel, S. M. (2012). Impact of high mathematics education on the number sense. PLoS ONE, 7(4), e33832. https://doi.org/10.1371/journal.pone.0033832
Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163-172. https://doi.org/10.1016/j.actpsy.2014.01.016
Cordes, S., Gallistel, C. R., Gelman, R., & Latham, P. (2007). Nonverbal arithmetic in humans: Light from noise. Attention, Perception, & Psychophysics, 69(7), 1185-1203. https://doi.org/10.3758/BF03193955
Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychonomic Bulletin and Review, 8, 698-707. https://doi.org/10.3758/BF03196206
De Smedt, B., Verschaffel, L., & Ghesquiere, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469-479. https://doi.org/10.1016/j.jecp.2009.01.010
DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00068
Dehaene, S. (2003). The neural basis for the Weber-Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145-147. https://doi.org/10.1016/s1364-6613(03)00055-x
Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2010). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study: Mathematical learning disabilities in kindergarten. British Journal of
Educational Psychology, 82(1), 64-81. https://doi.org/10.1348/2044-8279.002002
Diamantopoulou, S., Pina, V., Valero-García, A. V., González-Salinas, C., & Fuentes, L. J. (2012). Validation of the Spanish version of the Woodcock Johnson mathematics achievement tests for children aged six to thirteen. Journal of Psychoeducational Assessment, 30, 466-477. https://doi.org/10.1177/0734282912437531
Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53-72. https://doi.org/10.1016/j.jecp.2014.01.013
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314. https://doi.org/10.1016/j.tics.2004.05.002
Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15. https://doi.org/10.1177/00222194040370010201
Fonseca-Estupiñan, G. P., Rodríguez-Barreto, L. C., & Parra-Pulido, J. H. (2016). Relación entre funciones ejecutivas y rendimiento académico por asignaturas en escolares de 6 a 12 años. Revista hacia la Promoción de la Salud, 21(2). https://doi.org/10.17151/hpsal.2016.21.2.4
Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic arithmetic without instruction. Nature, 447, 589-591. https://doi.org/10.1038/nature05850
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394-406. https://doi.org/10.1016/j.cognition.2010.02.002
Ginsburg, H., Baroody, A. J., del Río, M. C. N., & Guerra, I. L. (2007). Tema-3: test de competencia matemática básica. Madrid: Tea.
Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457-1465. https://doi.org/10.1037/a0012682
Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116-11120. https://doi.org/10.1073/pnas.1200196109
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668. https://doi.org/10.1038/nature07246
Halberda, J., & Odic, D. (2014). The precision and internal confidence of our approximate number thoughts. En D. C. Geary, D. Berch & K. Koepke (Eds.), Evolutionary origins and early development of number processing (pp. 305-333). Londres: Academic Press.
Halberda, J., Sires, S. F., & Feigenson, L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science, 17(7), 572-576. https://doi.org/10.1111/j.1467-9280.2006.01746.x
Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29. https://doi.org/10.1016/j.jecp.2008.04.001
Hyde, C., & Spelke, E S. (2009). All numbers are not equal: An electrophysiological investigation of small and large number representations. Journal Cognitive Neuroscience, 21(6), 1039-1053. https://doi.org/10.1162/jocn.2009.21090
Iglesias-Sarmiento, V., & Deaño, M. (2011). Cognitive processing and mathematical achievement: A study with schoolchildren between fourth and sixth grade of primary education. Journal of Learning Disabilities, 44(6), 570-583. https://doi.org/10.1177/0022219411400749
Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6), 1222-1229. https://doi.org/10.3758/ s13423-011-0154-1
Iuculano, T., Tang, J., Hall, C. W. B., & Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental Science, 11(5), 669-680. https://doi.org/10.1111/j.1467-7687.2008.00716.x
Libertus, M. E., & Brannon, E. M. (2009). Behavioral and neural basis of number sense in infancy: Number sense in infancy. Current Directions in Psychological Science, 18(6), 346-351. https://doi.org/10.1111/j.1467-8721.2009.01665.x
Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy: Number discrimination in infants. Developmental Science, 13(6), 900-906. https://doi.org/10.1111/j.1467-7687.2009.00948.x
Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the Approximate Number System correlates with school math ability. Developmental Science, 14(6), 1292-1300. https://doi.org/10.1111/j.1467-7687.2011.01080.x
Libertus, M. E., Pruitt, L. B., Woldorff, M. G., & Brannon, E. M. (2009). Induced alpha-band oscillations reflect ratio-dependent number discrimination in the infant brain. Journal of Cognitive Neuroscience, 21(12), 2398-2406. https://doi.org/10.1162/jocn.2008.21162
Libertus, M. E., Woldorff, M. G., & Brannon, E. M. (2007). Electrophysiological evidence for notation independence in numerical processing. Behavioral and Brain Functions, 3(1), 1. https://doi.org/10.1186/1744-9081-3-1
Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense. Large-number discrimination in human infants. Psychological Science, 14(5), 396-401. https://doi.org/10.1111/1467-9280.01453
Lourenco, S. F., & Bonny, J. W. (2017). Representations of numerical and non-numerical magnitude both contribute to mathematical competence in children. Developmental Science, 20, e12418. https://doi.org/10.1111/desc.12418
Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121, 256-261. https://doi.org/10.1016/j.cognition.2011.07.009
Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17(5), 714-726. https://doi.org/10.1111/desc.12152
Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia): Impaired numerical acuity contributes to MLD. Child Development, 82(4), 1224-1237. https://doi.org/10.1111/j.1467-8624.2011.01608.x
Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185-208. https://doi.org/10.1146/annurev.neuro.051508.135550
Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PLoS ONE, 8(7), e67918. https://doi.org/10.1371/journal.pone.0067918
Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103, 490-502. https://doi.org/10.1016/j.jecp.2009.02.003
Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of approximate number and area representations. Developmental Psychology, 49(6), 1103-1112. https://doi.org/10.1037/a0029472
Park, J., & Brannon, E. M. (2013). Training the Approximate Number System improves math proficiency. Psychological Science, 24(10), 2013-2019. https://doi.org/10.1177/0956797613482944
Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., … Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41. https://doi.org/10.1016/j.cognition.2010.03.012
Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547-555. https://doi.org/10.1016/j.neuron.2004.10.014
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499-503. https://doi.org/10.1126/science.1102085
Pinel, J. P. (2009). Biopsychology. Nueva York: Pearson.
Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140, 50-57. https://doi.org/10.1016/ j.actpsy.2012.02.008
Rousselle, L., & Noël, M. -P. (2008). The development of automatic numerosity processing in preschoolers: Evidence for numerosity-perceptual interference. Developmental Psychology, 44(2), 544-560. https://doi.org/10.1037/0012-1649.44.2.544
Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30, 344-357. https://doi.org/10.1111/j.2044-835X.2011.02048.x
Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. The Quarterly Journal of Experimental Psychology, 67(2), 271-280. https://doi.org/10.1080/17470218.2013.803581
Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372. https://doi.org/10.1111/desc.12372
Schmidt, F. L., & Hunter, J. E. (1996). Measurement error in psychological research: Lessons from 26 research scenarios. Psychological Methods, 1(2), 199-223. https://doi.org/10.1037/1082-989X.1.2.199
Star, J. R., & Rittle-Johnson, B. (2009). It pays to compare: An experimental study on computational estimation. Journal of Experimental Child Psychology, 102, 408-426. https://doi.org/10.1016/j.jecp.2008.11.004
Szkudlarek, E., & Brannon, E. M. (2017). Does the Approximate Number System serve as a foundation for symbolic mathematics? Language Learning and Development, 13(2), 171-190. https://doi.org/10.1080/15475441.2016.1263573
Toll, S. W., Van Viersen, S., Kroesbergen, E. H., & Van Luit, J. E. (2015). The development of (non-) symbolic comparison skills throughout kindergarten and their relations with basic mathematical skills. Learning and Individual Differences, 38, 10-17. https://doi.org/10.1016/j.lindif.2014.12.006
Van Daal, V., Van der Leij, A., & Adèr, H. (2013). Specificity and overlap in skills underpinning reading and arithmetical fluency. Reading and Writing, 26, 1009-1030. https://doi.org/10.1007/s11145-012-9404-5
Van der Sluis, S., de Jong, P. F., & van der Leij, A. (2007). Executive functioning in children, and its relations with reasoning, reading, and arithmetic. Intelligence, 35, 427-449. https://doi.org/10.1016/j.intell.2006.09.001
von Hagen, A., Cuadro, A., & Giloca, V. (2017). La construcción de hechos numéricos básicos: incidencia del sexo, curso y nivel socioeconómico del alumno. Ciencias Psicológicas, 11(2), 67-76. https://doi.org/10.22235/cp.v11i2.1348
Wechsler, D. (2005). Escala de inteligencia de Wechsler para niños-IV. Madrid: TEA.
Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 20. https://doi.org/10.1186/1744-9081-2-20
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11. https://doi.org/10.1016/S0010-0277(99)00066-9
This journal is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.