Resumen
En este artículo se describen dos nuevos métodos para comparar dos distribuciones discretas independientes, cuando el espacio muestral es pequeño, usando una extensión del método Storer-Kim para comparar binomios independientes. Estos métodos son relevantes, por ejemplo, cuando se comparan grupos basados en una escala Likert, la cual motivó la escritura del artículo. En esencia, el objetivo es evaluar la hipótesis de que las probabilidades de células asociadas con dos distribuciones multinominales independientes son iguales. Se propone una prueba global y un procedimiento de comparación múltiple. Las propiedades de las muestras pequeñas de ambos métodos fueron comparadas con otras cuatro técnicas a través de simulaciones: generalización de Cliff de la prueba de Wilcoxon-Mann-Whitney que trata eficazmente con heteroscedasticidad y valores vinculados, la prueba de Yuen basada en medias truncadas, la prueba de Welch y la prueba t de Student. Para las simulaciones, los datos se generaron a partir de distribuciones beta-binomiales. Se utilizaron distribuciones tanto simétricas como asimétricas. El espacio muestral consistió en los enteros 0(1)4 o 0(1)10. Para la prueba global que se propone, cuando se evaluó al nivel de 0,05, la simulación estimó la probabilidad del error tipo I osciló entre 0.043 y 0.059. Para el nuevo procedimiento de comparación múltiple, la tasa de error estimada oscilaba entre 0.031 y 0.054 para el espacio de la muestra 0(1)4. Pero para 0(1)10, las estimaciones fueron tan bajas como 0,016 en algunas situaciones. Teniendo en cuenta el objetivo de la comparación de medias, la prueba t de Student es bien conocida por tener problemas prácticos cuando distribuciones difieren. Problemas similares se encuentraron entre las situaciones consideradas. No existe un único método que domina en términos de poder, como sería de esperar, debido a que los diferentes métodos son sensibles a las diferentes características de las distribuciones que son comparadas. Pero en general, uno de los nuevos métodos tiende a tener relativamente buen poder basado tanto en simulaciones y la experiencia con los datos de estudios reales. Si, sin embargo, existe un interés explícito en comparar medias, en lugar de comparar las probabilidades de celda, la prueba de Welch se encuentra que tiene un buen desempeño. Los nuevos métodos se ilustran usando datos del estudio Well-Elderly donde el objetivo es comparar los grupos en cuanto a la depresión y las estrategias utilizadas para hacer frente al estrés.
Esta revista científica se encuentra registrada bajo la licencia Creative Commons Reconocimiento 4.0 Internacional. Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente en formato digital, siempre que se reconozca el nombre de los autores y a la Pontificia Universidad Javeriana. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, para cualquier finalidad (incluso comercial), siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios. La Pontificia Universidad Javeriana no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. El aval sobre la intervención de la obra (revisión, corrección de estilo, traducción, diagramación) y su posterior divulgación se otorga mediante una licencia de uso y no a través de una cesión de derechos, lo que representa que la revista y la Pontificia Universidad Javeriana se eximen de cualquier responsabilidad que se pueda derivar de una mala práctica ética por parte de los autores. En consecuencia de la protección brindada por la licencia de uso, la revista no se encuentra en la obligación de publicar retractaciones o modificar la información ya publicada, a no ser que la errata surja del proceso de gestión editorial. La publicación de contenidos en esta revista no representa regalías para los contribuyentes.