Comparing discrete distributions when the sample space is small
PDF

Keywords

multinomial distribution
likert scales
storer–kim method
hochberg’s method
yuen’s method

How to Cite

Comparing discrete distributions when the sample space is small. (2013). Universitas Psychologica, 12(5). https://doi.org/10.11144/Javeriana.upsy12-5.cdds
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

This paper describes two new methods for comparing two independent, discrete distri¬butions, when the sample space is small, using an extension of the Storer–Kim method for comparing independent binomials. These methods are relevant, for example, when compar¬ing groups based on a Likert scale, which was the motivation for the paper. In essence, the goal is to test the hypothesis that the cell probabilities associated with two independent multinomial distributions are equal. Both a global test and a multiple comparison procedure are proposed. The small-sample properties of both methods are compared to four other techniques via simulations: Cliff’s generalization of the Wilcoxon–Mann–Whitney test that effectively deals with heteroscedasticity and tied values, Yuen’s test based on trimmed means, Welch’s test and Student’s t test. For the simulations, data were generated from beta-binomial distributions. Both symmetric and skewed distributions were used. The sample space consisted of the integers 0(1)4 or 0(1)10. For the global test that is proposed, when testing at the 0.05 level, simulation estimates of the actual Type I error probability ranged between 0.043 and 0.059. For the new multiple comparison procedure, the estimated family wise error rate ranged between 0.031 and 0.054 for the sample space 0(1)4. But for 0(1)10, the estimates dropped as low as 0.016 in some situations. Given the goal of comparing means, Student’s t is well known to have practical problems when distri-butions differ. Similar problems are found here among the situations considered. No single method dominates in terms of power, as would be expected, because different methods are sensitive to different features of the distributions being compared. But in general, one of the new methods tends to have relatively good power based on both simulations and experience with data from actual studies. If, however, there is explicit interest in comparing means, rather than comparing the cell probabilities, Welch’s test was found to perform well. The new methods are illustrated using data from the Well-Elderly Study where the goal is to compare groups in terms of depression and the strategies used for dealing with stress.

PDF

This journal is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.