Publicado dic 31, 2016



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Enrique Moraleda Barreno https://orcid.org/0000-0003-2324-6559

María Sheila Velo Ramirez

Pedro Juan Pérez Moreno https://orcid.org/0000-0002-6074-9385

Diego Macías Bedoya

##plugins.themes.bootstrap3.article.details##

Resumen

Diversas teorías intentan explicar las estrategias de navegación que utilizan los niños menores de 6 años, siendo el uso de la geometría el principal tema de debate. El objetivo del estudio fue estudiar los sistemas de navegación espacial en niños de 3 y 6 años y su utilización de diversos marcos de referencia geométricos y de la guía proximal. Los niños emplearán la geometría como predice la teoría de la combinación adaptativa. Dos grupos de 20 niños de 6 y 3 años, respectivamente. Se utilizó un laberinto circular donde los niños tenían que buscar un objeto escondido. Se formaron dos grupos: desorientados respecto a la habitación exterior y no desorientados. Los niños de 3 años necesitaron la información geométrica de la habitación exterior, los de 6 años también son capaces de emplear la guía proximal y pueden usar la geometría del recinto experimental si su aprendizaje se ha realizado en presencia de la geometría de la habitación. Los resultados apoyan la teoría de la combinación adaptativa, en lugar de la de módulos geométricos. Por otro lado, la presencia de marcos de referencia geométricos fiables facilita la utilización de otros tipos de claves que en su ausencia no son empleadas.

Keywords

associative learning, brain development, infant development, geometric module, psychobiologyaprendizaje asociativo, desarrollo cerebral, desarrollo Infantil, módulo geométrico, psicobiología

References
Best, P. J., White, A. M., & Minai, A. (2001). Spatial processing in the brain: The activity of hippocampal place cells. Annual Review of Neuroscience, 24, 459-486.

Biegler, R. & Morris, R. G. M. (1993). Landmark stability is a prerequisite for spatial but not discrimination learning. Nature, 361, 631–633.

Bullens, J., Nardini, M., Doeller, C. F., Braddick, O., Postma, A., & Burgess, N. (2010). The role of landmarks and boundaries in the development of spatial memory. Developmental Science, 13(1), 170–180.

Cheng, K. (1986). A purely geometric module in the rat spatial representation. Cognition, 23, 149-178.

Cheng, K. & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review, 12(1), 1-23.

Cheng, K., Huttenlocher, J., & Newcombe, N. S. (2013). 25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychonomic bulletin & review, 20(6), 1033-54 doi:10.3758/s13423-013-0416-1

Cheng, K., Shettleworth, S. J., Huttenlocher, J., & Rieser, J. J. (2007). Bayesian integration of spatial information. Psychological Bulletin, 133, 625–637.

Chiandetti, C., Regolin, L., Sovrano, V. A., & Vallortigara, G. (2007). Spatial reorientation: the effects of space size on the encoding of landmark and geometry information. Animal Cognition, 10, 159–168.

Doeller, C. F. & Burgess, N. (2008). Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences of the United States of America, 105, 5909–5914.

Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 105, 5915–5920.

Hermer, L. & Spelke, E. S. (1994). A Geometric Process for Spatial Reorientation in Young Children. Nature, 370, 77-79.

Hermer-Vazquez, L., Moffet, A. & Munkholm P. (2001). Language, space, and the development of cognitive flexibility in humans: the case of two spatial memory tasks. Cognition, 79(3), 263-99.

Hupbach, A. & Nadel, L. (2005). Reorientation in a rhombic environment: no evidence for an encapsulated geometric module. Cognitive Development, 20, 279–302.

Kretschmann, H. J., Kammradt, G., Krauthausen, I., Sauer, B., & Wingert, F., (1986). Growth of the hippocampal formation in man. Bibliotheca Anatomica, 28, 27-52.

Lackner, J. R. & DiZio, P. (2005). Vestibular, proprioceptive, and haptic contributions to spatial orientation. Annual Review of Psychology, 56, 115-47.

Learmonth, A. E., Nadel, L., & Newcombe, N. S. (2002). Children´s use of landmarks: implications for modularity theory. Psychological Science, 13, 337-341.

Learmonth, A., Newcombe, N. S., Sheridan, M., & Jones, M. (2008). Why size counts: Children’s spatial reorientation in large and small enclosures. Developmental Science, 11, 414–426.

Learmonth, A. E., Newcombe. N. S., & Huttenlocher, J. (2001). Toddlers´ use of metric information and landmarks to reorient. Journal of Experimental Child Psychology, 80, 225-244.

Lee, S. A., Sovrano, V. A., & Spelke, E. S. (2012). Navigation as a source of geometric knowledge: Young children’s use of length, angle, distance, and direction in a reorientation task. Cognition, 123, 144-161.

Lee, S. A., & Spelke, E. S. (2010). Two systems of spatial representation underlying navigation. Experimental Brain Research, 206, 179–188.

Lee, S. A., & Spelke, E. S. (2011). Young children reorient by computing layout geometry, not by matching images of the environment. Psychological Bulletin and Review, 18, 192–198.

Lew, A. R., Foster, K. A., & Bremner, J. G. (2006). Disorientation inhibits landmark use in 12–18-month-old infants. Infant Behavior and Development, 29, 334-341.

Lew, A. R., Gibbons, B., Murphy, C., & Bremner, J. G. (2010). Use of geometry for spatial reorientation in children applies only to symmetric spaces. Developmental Science 13(3), 490–498.

Lourenco, S. F., Addy, D., & Huttenlocher, J. (2008). Location representation in enclosed spaces: What types of information afford young children an advantage? Journal of Experimental Child Psychology, 104, 313-325.

Lourenco, S. F. & Huttenlocher, J. (2008). The representation of geometric cues in infancy. Infancy, 13(2), 103-127.

Moraleda, E., Broglio, C., Rodríguez, F., & Gómez A. (2013). Development of different spatial frames of reference for orientation in small-scale environments. Psicothema, 25(4), 468-475.

Mrzljak, L., Uilings, H., Van Eden, C., & Judas, M. (1990). Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Progress in Brain Research, 85, 185-222.

Nardini, M., Atkinson, J., & Burgess, N. (2008). Children reorient using the left/right sense of colored landmarks at 18–24 months. Cognition, 106, 519-527.

Nardini, M., Burgess, N., Breckenridge, K., & Atkinson, J. (2006). Differential developmental trajectories for egocentric, environmental and intrinsic frames of reference in spatial memory. Cognition, 101, 153-172.

O’Keefe, J. (2007). Hippocampal neurophysiology in the behaving animal. En P. Andersen, R. Morris, D. Amaral, T. Bliss & J. O’Keefe (Eds.), The hippocampus book (pp. 475-548). Oxford: Oxford University Press.

O´Keefe, J. & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press.

Overman, W. H., Pate, B. J., Moore, K., & Peuster, A. (1996). Ontogeny of place learning in children as measured in the radial arm maze, Morris search task and open field task. Behavioral Neuroscience, 110(6), 1205-28.

Ratliff, K. R. & Newcombe, N. S. (2008). Reorienting when cues conflict: Evidence for an adaptive-combination view. Psychological Science, 19, 1301–1307.

Rescorla, R. A. & Wagner, A. R. (1972). A theory of pavlovian conditioning: Variations in the effectiveness of reinforcment and nonreinforcement. En A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current theory and research (pp. 64–99). New York: Appleton-Century-Crofts.

Ruggiero, G., D'Errico, O., & Iachini, T. (2015). Development of egocentric and allocentric spatial representations from childhood to elderly age. Psychological Research, 80(2), 259-272.

Seress, L. (1992). Morphological variability and developmental aspects of monkey and human granule cells: differences between the rodent and primate dentate gyrus Epilepsy Res. Suppl. 7. En C. E. Ribak (Ed.), The dentate gyrus and its role in seizures (pp. 3-28). Amsterdan: Elsevier Science Publishers B.V.

Sluzenski, J., Newcombe, N., & Ottinger, W. (2004). Changes in reality monitoring and episodic memory in early childhood. Developmental Science, 7(2), 225-245.

Smith, A. D., Gilchrist, I. D., Cater, K., Ikram, N., Nott, K., & Hood, B. M. (2008). Reorientation in the real world: The development of landmark use and integration in a natural environment. Cognition, 107, 1102–1111.

Sowell, E., Thomsom, P., Holmes, C., Batth, R., Jernigan, T., & Toga, A. (1999). Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. Neuroimage, 9, 587-597.

Taube, J. S. (2011). Head direction cell firing properties and behavioral performance in 3-D space. Journal of Physiology, 589(4), 835-841.

Twyman, A., Friedman, A., & Spetch, M. L. (2007). Penetrating the geometric module: Catalyzing children’s use of landmarks. Developmental Psychology, 43, 1523–1530.

Welberg, L. (2012). Spatial processing: Parietal enthorhinal cortex cells in navigation. Nature Reviews Neuroscience, 11, 223.

White, N. R. & McDonald, R. J. (2002). Multiple parallel memory systems in the brain of the rat. Neurobiology of Learning and Memory, 77, 125–184.
Cómo citar
Moraleda Barreno, E., Velo Ramirez, M. S., Pérez Moreno, P. J., & Macías Bedoya, D. (2016). Navegación espacial en niños en un laberinto circular: la interacción entre diferentes marcos geométricos de referencia. Universitas Psychologica, 15(5). https://doi.org/10.11144/Javeriana.upsy15-5.nenl
Sección
Artículos

Artículos más leídos del mismo autor/a