Visual Search Tasks: Models, Neurological Bases, Usefulness and Prospective
HTML Full Text (Spanish)
PDF (Spanish)
XML (Spanish)

Keywords

visual search tasks
perception
visual processing
eye movements
attention

How to Cite

Visual Search Tasks: Models, Neurological Bases, Usefulness and Prospective. (2018). Universitas Psychologica, 17(1), 1-12. https://doi.org/10.11144/Javeriana.upsy17-1.tbvm
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

Visual search tasks, that are based on the recognition of either a characteristic or an specific visual stimulus, have contributed to the development of psychological research. By doing a narrative review of the ways to carry out these tasks, and considering their usages as factors that instrumentalise research, several paradigms emerge so as to understand multiple psychological processes. It has been manifested that visual search tasks can imply eye-movement recordings as well as operationalizing systems connected to the modulation of both attentional and perceptual processes, which are essentially aligned with exogenous rewards. These rewards, added to some processes related to the adaptation to the environment, are incorporated in such a way that the notion of perception to action is enforced.

HTML Full Text (Spanish)
PDF (Spanish)
XML (Spanish)

Barlow, H. B. (1972). Single units and sensation: a neuron doctrine for percetual psychology? Perception, 1(4), 371-394. https://doi.org/10.1068/p010371

Brouwer, A. M., Reuderink, B., Vincent, J., van Gerven, M. A., & van Erp, J. B. (2013). Distinguishing between target and nontarget fixations in a visual search task using fixation-related potentials. Journal of Vision, 13(3), 17. https://doi.org/10.1167/13.3.17

Caputi, A., & Rudelli, R. (2014). Procesamiento sensorial y percepción. En D. Redolar (Ed.), Neurociencia cognitiva (pp. 231-256). Madrid: Editorial Médica Panamericana.

Carlson, N. R. (2006). Fisiología de la conducta. Madrid: Pearson Educación.

Coren, S., Ward, L. M., & Enns, J. T. (2001). Sensación y percepción. Ciudad de México: McGraw-Hill.

Dandekar, S., Ding, J., Privitera, C., Carney, T., & Klein, S. A., (2012). The fixation and saccade p3. PLoS One, 7(11), e48761. https://doi.org/10.1371/journal.pone.0048761

Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: Investigating a “dimension-weighting” account. Attention, Perception, & Psychophysics, 58(1), 88-101. https://doi.org/10.3758/BF03205479

Gale, A. G., & Findlay, J. M. (1983). Eye-movement patterns in viewing ambiguous figures. En R. Groner (Ed.), Eye movements and psychological functions: international views (pp. 145-168). Hillsdale, NJ: LEA.

Geyer, T., Müller, H. J., & Krummenacher, J. (2006). Cross-trial priming in visual search for singleton conjunction targets: Role of repeated target and distractor features. Perception & Psychophysics, 68(5), 736-749. https://doi.org/10.3758/BF03193697

Glimcher, P. W. (2009). Choice: towards a standars back-pocket model. En P. Glimcher, & E. Fehr (Eds.), Neuroeconomics: Decision Making and The Brain (pp. 501- 519). Londres: Academic Press.

Himmelbach, M., Erb, M., & Kartath, H. (2007). Activation of superior colliculi in humans during visual exploration. BMC Neuroscience, 8, 66. https://doi.org/10.1186/1471-2202-8-66

Hochberg, J., & Peterson, M. (1987). Piecemeal organization and cognitive components in object perception: Perceptually coupled responses to moving objects. Journal of Experimental Psychology: General, 116(4), 370-380.

Hsiao, J., Chen, Y., Spence, Ch., & Yeh, S. (2012). Assessing the effects of audiovisual semantic congruency on the perception of a biestable figure. Consciousness and Cognition, 21(2), 775-787. https://doi.org/10.1016/j.concog.2012.02.001

Kamienkowski, J. E., Ison, M. J., Quiroga, R. Q., & Sigman, M. (2012). Fixation-related potentials in visual search: a combined EEG and eye tracking study. Journal of Vision, 12(7), 4. https://doi.org/10.1167/12.7.4

Kandel, E., Schwartz, J., & Jessell, T. (2008). Neurociencia y conducta. Madrid: Prentice Hall.

Kazai, K., & Yagi, A. (1999). Integrated effect of stimulation at fixation points on EFRP (eye-fixation related brain potentials). International Journal of Psychophysiology, 32(3), 193-203. https://doi.org/10.1016/S0167-8760(99)00010-0

Kornmeier, J., & Bach, M. (2012). Ambiguous figures - What happens in the brain when perception changes but not the stimulus. Frontiers in Human Neuroscience, 6, 1-23. https://doi.org/10.3389/fnhum.2012.00051

Leopold, D., & Logothetis, N. (1999). Multistable phenomena: changing views in perception. Trends in cognitive sciences, 3(7), 254-264. https://doi.org/10.1016/S1364-6613(99)01332-7

Lettvin, J., Maturana, H., McCulloch, W., & Pitts, W. (1959). What’s the frog’s eye tells the frog’s brain? Proceedings of the Institute of Radio Engineers, IRE, 47(11), 1940-1951. https://doi.org/10.1109/JRPROC.1959.287207

Long, G. M., & Moran, C. (2007). How to keep a reversible figure from reversing: Teasing out top-down and bottom-up processes. Perception, 36(3), 431-445. https://doi.org/10.1068/p5630

Long, G. M., & Olszweski, A. D. (1999). To reverse or not to reverse: When is an ambiguous figure not ambiguous? American Journal of Psychology, 112(1), 41-71. http://dx.doi.org/10.2307/1423624

Long, G. M., & Toppino, T. C. (2004). Enduring interest in perceptual ambiguity: alternating views of reversible figures. Psychological Bulletin, 130(5), 748-768. http://dx.doi.org/10.1037/0033-2909.130.5.748

Long, G. M., Stewart, J. A., & Glancey, D. E. (2002). Configural biases and reversible figures: Evidence of multilevel grouping effects. American Journal of Psychology, 115(4), 581-607. http://dx.doi.org/10.2307/1423528

Long, G. M., Toppino, T. C., & Kostenbauder, J. F. (1983). As the cube turns: Evidence for two processes in the perception of a dynamic reversible figure. Perception & Psychophysics, 34(1), 29-38. https://doi.org/10.3758/BF03205893

Long, G. M., Toppino, T. C., & Mondin, G. W. (1992). Prime time: Fatigue and set effects in the perception of reversible figures. Perception & Psychophysics, 52(6), 609-616. https://doi.org/10.3758/BF03211697

Maarek, P. (2009). Marketing político y comunicación. Claves para una buena información política. Barcelona: Paidós.

Maljkovic, V., & Nakayama, K. (2000). Priming of pop out: III. A short-term implicit memory system beneficial for rapid target selection. Visual Cognition, 7(5), 571-595. https://doi.org/10.1080/135062800407202

Marr, D. (1982). Vision. New York: W.H. Freeman and Company.

Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57(1), 1-17. https://doi.org/10.3758/BF03211845

Najemnik, J., & Geisler, W. (2008). Eye movement statistics in humans are consistent with an optimal search strategy. Journal of Vision, 8(3), 1-14. https://doi.org/10.1167/8.3.4

Pires, A., Vásquez, A., Carboni, A., & Maiche, A. (2014). Percepción visual. En D. Redolar (Ed.), Neurociencia cognitiva (pp. 257-286). Madrid: Editorial Médica Panamericana.

R. H. Wurtz, & M. E. Goldberg (Eds.). (1989). The Neurobiology of Saccadic Eye Movements (Reviews of Oculomotor Research Vol. 3). Amsterdam: Elsevier.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422. http://doi.org/10.1037/0033-2909.124.3.372

Roca, E. M., Rosselló, J., Maiche, A., García, D. T., & Roberts, M. N. (2008). Modelos teóricos y neurociencia cognitiva de la percepción. En J. Tirapú, F. Maestú, & M. Ríos (Eds.), Manual de neuropsicologia (pp. 59-96). Barcelona: Viguera Editores.

Shah, D. S., Prados, J., Gamble, J., De Lillo, & Gibson, C. (2013). Sex differences in spatial memory using serial and search tasks. Behavioural Brain Research, 257, 90-99. https://doi.org/10.1016/j.bbr.2013.09.027

Thomas, N., & Pare, M. (2007). Temporal processing of saccade targets in parietal cortex area LIP during visual search. Journal of Neurophysiology, 97(1), 942-947. https://doi.org/10.1152/jn.00413.2006

Treisman, A. (1986). Features and objects in visual processing. Scientific American, 255(5), 114-125. https://doi.org/10.1038/scientificamerican1186-114B

Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology, 40(2), 201-237. https://doi.org/10.1080/02724988843000104

Treisman, A. (1991). Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception and Performance, 17(3), 652-676.

Trommershäuser, J., Glimcher, P., & Gegenfurtner, K. (2009). Visual processing, learning and feedback in the primate eye movement system. Trends in Neurosciences, 32(11), 583-590. https://doi.org/10.1016/j.tins.2009.07.004

von Grünau, M. W., Wiggin, S., & Reed, M. (1984). The local character of perspective organization. Perception & Psychophysics, 35(4), 319-324. https://doi.org/10.3758/BF03206335

Weidner, R., Pollmann, S., Müller, H. J., & von Cramon, D. Y. (2002). Top-down controlled visual dimension weighting: An event-related fMRI study. Cerebral Cortex, 12(3), 318-328. https://doi.org/10.1093/cercor/12.3.318

White, B. J., Gegenfurtner, K. R. & Kerzel, D. (2005). Effects of structured nontarget stimuli on saccadic latency. Journal of Neurophysiology, 93(6), 3214-3223. https://doi.org/10.1152/jn.01104.2004

White, B. J., Stritzke, M., & Gegenfurtner, K. R. (2008). Saccadic facilitation in natural backgrounds. Current Biology, 18(2), 124-128. https://doi.org/10.1016/j.cub.2007.12.027

Xu, J., & Yue, S. (2014). Mimicking visual searching with integrated top down cues and low-level features. Neurocomputing, 133, 1-17. https://doi.org/10.1016/j.neucom.2013.11.037

Yu, R., & Chan, A.H.S. (2013). Visual search time in detection tasks with multiple targets: Considering change of the effective stimulus field area. International Journal of Industrial Ergonomics, 43(4), 328-334. https://doi.org/10.1016/j.ergon.2013.04.010

This journal is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.