Dyslexia and Dyscalculia: a Current Systematic Revision from a Neurogenetics Perspective
HTML Full Text (Spanish)
PDF (Spanish)
XML (Spanish)

Keywords

learning disorders
specific learning disorder
dyslexia
dyscalculia
neuroimage
genetics

How to Cite

De La Peña Álvarez, C., & Bernabéu Brotóns, E. (2018). Dyslexia and Dyscalculia: a Current Systematic Revision from a Neurogenetics Perspective. Universitas Psychologica, 17(3), 1-11. https://doi.org/10.11144/Javeriana.upsy17-3.ddrs
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

The Specific Learning Disorders represent a heterogeneous group of common conditions that can generate important problems not only during schooling but also throughout life. The persistent difficulties in reading (dyslexia) and maths (dyscalculia) are, due to their significance and prevalence, the two most important learning disorders in both educational and clinical practice. The objective of this study is to make a synthesis of the scientific findings of the past ten years about neuroanatomical and genetic basis of dyslexia and dyscalculia. To this aim a comprehensive bibliographic analysis is conducted from 2006 until January, 2017 in English and Spanish from databases Medline, PsyInfo, Scopus, Web of Science y Dialnet. There were included 43 articles with contributions so much about dyslexia as dyscalculia from the neuroimagen and the genetics. This information will provide tools to guide psychological and educational environments and to provide definitive answers.

HTML Full Text (Spanish)
PDF (Spanish)
XML (Spanish)

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington DC: APA.

Anthoni, H., Zucchelli, M., Matsson, H., Müller-Myhsok, B., Fransson, I., .. Peyrard-Janvid, M. (2007). A locus on 2p12 containing the coregulated MRPL19 and C2ORF3 genes is associated to dyslexia. Hum Mol Genet, 16(6), 667—77. https://doi.org/10.1093/hmg/ddm009

Artigas-Pallarés, J. (2009). Dislexia: enfermedad, trastorno o algo distinto. Rev Neurol, 48(Supl 2), S63-S69. Recuperado de https://www.neurologia.com/articulo/2009007

Ashkenazi, S., Rosenberg-Lee, M., Tenison, C., & Menon, V. (2012). Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia. Developmental Cognitive Neuroscience, 2(1), S1, S152–S166. https://doi.org/10.1016/j.dcn.2011.09.006

Bates, T., Luciano, M., Medland, S., Montgomery, G., Wright, M. & Martin, N. (2011). Genetic variance in a component of the language acquisition device: ROBO1 polymorphisms associated with phonological buffer deficits. Behav Genet, 41(1), 50—57. https://doi.org/10.1007/s10519-010-9402-9

Benítez-Burraco, A. (2007). Bases moleculares de la Dislexia. Rev Neurol, 45(8), 491-502. Recuperado de https://www.uma.es/media/files/BASES_MOLECULARES_DE_LA_DISLEXIA.pdf

Benítez-Burraco, A. (2008). FOXP2 y la biología molecular del lenguaje: nuevas evidencias. II. Aspectos moleculares e implicaciones para la ontogenia y la filogenia del lenguaje. Neurología, 46(6), 351-359. Recuperado de https://www.unioviedo.es/biolang/pdf/FOXP2nuevasevidenciasII.pdf

Benítez-Burraco, A. (2010). Neurobiología y neurogenética de la dislexia. Neurología, 25(9), 563-81. Recuperado de https://doi.org/10.1016/j.nrl.2009.12.010

Benítez-Burraco, A. (2012). Aspectos problemáticos del análisis genético de los trastornos específicos del lenguaje, FOXP2 como paradigma. Neurología, 27(4), 225-33. https://doi.org/10.1016/j.nrl.2011.04.008

Berteletti, I., Prado, J. & Booth, J. R. (2014). Children with mathematical learning disability fail in recruiting verbal and numerical brain regions when solving simple multiplication problems. Cortex, 57, 43–55. https://doi.org/10.1016/j.cortex.2014.04.001

Bugden, S., & Ansari, D. (2015). How can cognitive developmental neuroscience constrain our understanding of developmental dyscalculia? In S. Chinn (Ed.), International handbook of dyscalculia and mathematical learning difficulties (pp. 18–43). London: Routledge. https://doi.org/10.4324/9781315740713

Cantlon, J., Davis, S., Libertus, M., Kahane, J., Brannon, E. & Pelphrey, K. (2011). Intra-parietal white matter development predicts numerical performance in children. Learn individ Differ, 21(6), 672–680. https://doi.org/10.1016/j.lindif.2011.09.003

Carboni-Román, A., Del Río Grande, D., Capilla, A., Maestú, F. & Ortiz, T. (2006). Bases neurobiológicas de las dificultades de aprendizaje. Neurología, 42(S2), S171-175. Recuperado de https://www.uma.es/media/files/BASES_NEUROLOGICAS_DE_LAS_DA.pdf

Cuadrado, P., Ho, J. & Vernes, S. (2014). Shining a light on CNTNAP2: complex functions to complex disorders. European Journal of Human Genetics, 22, 171-1788. https://doi.org/10.1038/ejhg.2013.100

Currier, T., Etchegaray, M., Haight, J., Galaburda, A. & Rosen, G. (2011). The effects of embryonic knockdown of the candidate dislexia susceptibility gene homologue Dyx1c1 on the distribution of GABAergic neurons in the cerebral cortex. Neuroscience, 172(13), 535 – 46. Recuperado de https://doi.org/10.1016/j.neuroscience.2010.11.002

Cutini, S., Szűcs, D., Mead, N., Huss, M. & Goswami, U. (2016). Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia. Neuroimage, 143, 40–49. https://doi.org/10.1016/j.neuroimage.2016.08.012

De la Peña, C. (2012). La dislexia desde la neuropsicología infantil. Madrid: Sanz y Torres.

Dehaene, S. & Cohen, L. (1995). Towards an anatomical and functional model for number processing. Math Cogn 1, 83-120. Recuperado de http://www.unicog.org/publications/DehaeneCohen_TripleCodeModelNumberProcessing_MathCognition1995.pdf

Díaz, B., Hintz, F., Kiebel, S. & Von Kriegstein, K. (2012). Dysfunction of the auditory thalamus in developmental dyslexia. Proc Natl Acad Sci U S A, 109, 13841—6. https://doi.org/10.1073/pnas.1119828109

Etchepareborda, M., Mulas, F., Gandía, R., Abad-Mas, L., Moreno-Madrid, F. & Díaz-Lucero, A. (2006). Técnica de evaluación funcional de los trastornos del neurodesarrollo. Neurología, 42(S2), S71-81. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/16555221?dopt=Abstract

Gavin, R., Price, R., Wilkey, E., Yeoa, D. & Cutting, L. (2015) The relation between 1st grade grey matter volume and 2nd grade math competence. Neuroimage, 124(Part A), 232–237. https://doi.org/10.1016/j.neuroimage.2015.08.046

Gersten, R., Clarke, B. & Mazzocco, M. (2007). Historical and contemporary perspectives on mathematical learning disabilities. In Berch D.B. & Mazzocco M.M (Eds). Why Is Math So Hard for Some Children? The nature and origins of mathematics learning difficulties and disabilities (pp. 7-27). Baltimore: Brookes Publishing.

Jolles, D., Ashkenazi, S., Kochalka, J., Evans, T., Richardson, J., … Menon, V. (2016). Parietal hyper-connectivity, aberrant brain organization, and circuit-based biomarkers in children with mathematical disabilities. Developmental Science 19(4), 613–631. https://doi.org/10.1111/desc.12399

Kadosh, R. & Walsh, V.(2007). Dyscalculia. Current Biology, 17(22) 946 – 947. https://doi.org/10.1016/j.cub.2007.08.038

Kanzafarova, R., Kazantseva, A. & Khusnutdinova, E. (2015). Genetic and environmental aspects of mathematical disabilities. Genetika, 51(3), 223-230. https://doi.org/10.1134/S1022795415010032

Klein, E., Moeller, K. & Willmes, K. (2013). A neural disconnection hypothesis on impaired numerical processing. Frontiers in Human Neuroscience,. 7, 663. https://doi.org/10.3389/fnhum.2013.00663

Kraft, I., Schreiber, J., Cafiero, R., Metere, R., Schaadt, G., … Skeide, M.A. (2016). Predicting early signs of dyslexia at a preliterate age by combining behavioral assessment with structural MRI. Neuroimage, 143, 378-386. https://doi.org/10.1016/j.neuroimage.2016.09.004

Krueger, F., Landgraf, S., Van der Meer, E., Deshpande, G. & Hu. X. (2011). Effective connectivity of the multiplication network: a functional MRI and multivariate granger causality mapping study. Human Brain Mapping, 32(9), 1419–1431. https://doi.org/10.1002/hbm.21119

Kucian, K., Ashkenazi, S., Hänggi, J., Rotzer, S., Jäncke, L., Martin, E. & Von Aster, M. (2013). Developmental dyscalculia: a dysconnection syndrome? Brain Structure & Function, 219(5), 1721-1733. https://doi.org/10.1007/s00429-013-0597-4

Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E. & Von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study. Behavioral and Brain Functions, 2(31), 1-17. https://doi.org/10.1186/1744-9081-2-31

Lagae, L. (2008). Learning Disabilities: Definitions, Epidemiology, Diagnosis and Intervention Strategies. Pediatr Clin N Am, 55(6), 1259-1268. https://10.1016/j.pcl.2008.08.001

Lebel, C., Shaywitz, B., Holahan, J., Shaywitz, S., Marchione, K. & Beaulieu, C. (2013). Diffusion tensor imaging correlates of reading ability in disfluent and non-impaired readers. Brain Lang, 125(2), 215-22. https://doi.org/10.1016/j.bandl.2012.10.009

Lehongre, K., Ramus, F., Villiermet, N., Schwartz, D., Giraud, A. (2011). Altered low-gamma sampling in auditory cortex accounts for the three main facets of dyslexia. Neuron, 72(6), 1080-90. https://doi.org/10.1016/j.neuron.2011.11.002

Ludwig, K., Saman, P., Alexander, M., Becker, J., Bruder, …. Czamara, D. (2013). A common variant in myosin-18B contributes to mathematical abilities in children with dyslexia and intraparietal sulcus variability in adults. Transl Psychiatry 3(e229), 11-8. https://doi.org/10.1038/tp.2012.148

Marino, C., Mascheretti, S., Riva, V., Cattaneo, F., Rigoletto, C., …. Molteni, M. (2011). Pleiotropic effects of DCDC2 and DYX1C1 genes on language and mathematics traits in nuclear families of developmental dyslexia. Behavioral Genet, 41(1), 67-76. https://doi.org/10.1007/s10519-010-9412-7

Millá, G. (2006). Atención temprana de las dificultades de aprendizaje. Rev Neurol, 42(Supl 2), 153-156. Recuperado de http://www.mdp.edu.ar/psicologia/psico/sec-academica/asignaturas/aprendizaje/Materiales_2014/TAAtencion_temprana_de_las_dificultades_aprendizaje.pdf

Morken, F., Helland, T., Hugdahl, K. & Specht, K. (2017). Reading in dyslexia across literacy development: A longitudinal study of effective connectivity. Neuroimage,144, 92–100. https://doi.org/10.1016/j.neuroimage.2016.09.060

National Institute of Neurological Disorder and Stroke. (2016). Dyslexia Information Page. Recuperado de https://www.ninds.nih.gov/Disorders/All-Disorders/Dyslexia-Information-Page

Newbury, D., Fisher, S. & Monaco, A. (2010). Recent advances in the genetics of language impairment. Genome Med., 2, 6. https://doi.org/10.1186/gm127

Pagnamenta, A., Bacchelli, E., de Jonge, M., Mirza, G., Scerri, T., Minopoli, F., …. Moncao, A. P. (2010). Characterization of a family with rare deletions in CNTNAP5 and DOCK4 suggests novel risk loci for autism and dyslexia. Biol Psychiatry, 68(4), 320—8. https://doi.org/10.1016/j.biopsych.2010.02.002

Parachini, S., Steer, C., Buckingham, L., Morris, A., Ring, S., …. Monaco, A. P. (2008). Association of the KIAA0319 dyslexia susceptibility gene with reading skills in the general population. American Journal of Psychiatriy, 165(12), 1576-1584. https://doi.org/10.1176/appi.ajp.2008.07121872

Pernet, C., Anderson, J., Paulessu, E. & Demonet, J. (2009). When all hypotheses are right: A multifocal account of dyslexia. [Abstract]. Human Brain Imaging, 30(7), 2278-92. https://doi.org/10.1002/hbm.20670

Pernet, C., Pauline, J., Demonet, J. & Rousselet, G. (2009). Brain classification reveals the right cerebellum as the best biomarker of dyslexia. BMC Neurosci, 10, 67. https://doi.org/10.1186/1471-2202-10-67

Pettigrew, K., Fajutrao Valles, S., Moll, K., Northstone, K., Ring, S., … Paracchini, S. (2015). Lack of replication for the myosin-18B association with mathematical ability in independent cohorts. Genes Brain Behavior, 14(4), 369-76. https://10.1111/gbb.12213

Peyrin, C., Lallier, M., Démonet, J., Pernet, C., Baciu, M., Le Bas, J., et al. (2012). Neural dissociation of phonological and visual attention span disorders in developmental dyslexia: FMRI evidence from two case reports. Brain and Language, 120(3), 381-94. https://doi.org/10.1016/j.bandl.2011.12.015

Price, R. & Ansari, D. (2013). Dyscalculia: Characteristics, Causes, and Treatments. Numeracy, 6(1), 2. https:// http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1112&context=numeracy

Pugh, K., Landi, N., Preston, J., Mencl, W.E., Austin, A. … Frost, S.J. (2013). The relationship between phonological and auditory processing and brain organization in beginning readers. Brain and Language, 125(2), 173-183.

Rimrodt, S., Peterson, D., Denckla, M., Kaufmann, W., Cutting, L. (2010). White matter microstructural differences linked to left perisylvian language network in children with dyslexia. Cortex, 46(6), 739-49. https://doi.org/10.1016/j.cortex.2009.07.008

Rotzer, S., Kucian, K., Martin, E., Von Aster, M., Klaver, P. & Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. NeuroImage, 39(1), 417–422. https://doi.org/10.1016/j.neuroimage.2007.08.045

Rubinsten, O. & Henik, A. (2005). Automatic activation of internal magnitudes: A study of developmental dyscalculia. Neuropsychology, 19(5), 641–648. https://doi.org/10.1037/0894-4105.19.5.641

Rykhlevskaia, E., Uddin, L. Q., Kondos, L. & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3(51), 1-13. https://doi.org/10.3389/neuro.09.051.2009

Steinbrink, C., Groth, K., Lachmann, T. & Riecker, A. (2012). Neural correlates of temporal auditory processing in developmental dyslexia during German focal length discrimination: An fMRI study. Brain and Language, 121(1), 1-11. https://doi.org/10.1016/j.bandl.2011.12.003

Sun, Y., Lee, J. & Kirby, R. (2010). Brain Imaging Findings en Dyslexia [Abstract]. Pediatrics and Neonatology, 51(2), 89-96. https://doi.org/10.1016/S1875-9572(10)60017-4.

Szalkowski, C., Fiondella, C., Galaburda, A., Rosen, G., LoTurco, J. & Fitch, R. (2010). Neocortical disruption and behavioral impairments in rats following in utero RNAi of candidate dyslexia risk gene KIAA0319.International Journal of Developmental Neuroscience, 30(4), 293-302. https://doi.org/10.1016/j.ijdevneu.2012.01.009

Veerappa, A., Saldanha, A., Padakannaya, P. & Ramachandra, N. (2013). Genome-wide copy number scan identifies disruption of PCDH11X in developmental dyslexia. American Journal of Medical Genetics, 162(8), 889-97. https://doi.org/ 10.1002/ajmg.b.32199

Ziegler, J., Castle, C., Pech-Georgel, C., George, F., Alario, F-A. & Perry, C. (2008). Developmental dislexia and the dual route of Reading: Simulating individual differences and subtypes. Cognition, 107(1), 151-78. https://doi.org/10.1016/j.cognition.2007.09.004

This journal is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.