Abstract
In this paper we prove the existence and uniqueness of weak solutions for a kind of Lotka–Volterra system, by using successive linearization techniques. This approach has the advantage to treat two equations separately in each iteration step. Under suitable initial conditions, we construct an invariant region to show the global existence in time of solutions for the system. By means of Sobolev embeddings and regularity results, we find estimates for predator and prey populations in adequate norms. In order to demonstrate the convergence properties of the introduced method, several numerical examples are given.
Murray JD. Mathematical Biology. Springer-Verlag, Berlin, 1993.
Turchin P. Complex Population Dynamics. Princeton Univ. Press, Princeton, NJ. 2003.
Dunbar S. Traveling wave solutions of diffusive Lotka - Volterra equations, Journal of Mathematical Biology, 1: 11-32, 1983.
doi: 10.1007/BF00276112
Xu Z, Weng P. Traveling waves in a diffusive predator - prey model with general functional response, Electronic Journal of Differential Equations, 197: 1-13, 2012.
Tang De, Ma Li. Existence and uniqueness of a Lotka - Volterra reaction - diffusion model with advection term, Applied Mathematics Letters, 86: 83-88, 2018.
doi: 10.1016/j.aml.2018.06.015
Khan H, Li Y, Khan A, Khan A. Existence of solution for a fractional-order Lotka - Volterra reaction - diffusion model with Mittag - Leffler kernel, Mathematical Methods in the Applied Sciences, 42(9): 1-11, 2019.
doi: 10.1002/mma.5590
Pao CV. Dynamics of Lotka - Volterra competition reaction-diffusion systems with degenerate diffusion, Journal of Mathematical Analysis and Applications, 421(2): 1721-1742, 2015.
doi: 10.1016/j.jmaa.2014.07.070
Guo X, Wang J. Dynamics and pattern formations in diffusive predator - prey models with two prey - taxis, Mathematical Methods in the Applied Sciences, 42(12): 4197-4212, 2019.
doi: 10.1002/mma.5639
Roubicek, T. Nonlinear Partial Differential Equations with Applications. Birkhauser Verlag, Basel, Switzerland, 2005.
Evans LC. Partial differential equations, American Mathematical Society, Providence, RI, 2010.
Smoller J. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, Berlin, 1994.
Univ. Sci. is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.