Two possible candidate enzymes from Ulva lactuca-associated epiphytic bacteria obtained through PCR and functional evaluation
##plugins.themes.bootstrap3.article.details##
Epiphytic bacteria from marine macroalgae synthesize enzymes of industrial and biotechnological interest. In this study, we obtained two DNA candidate fragments for lipid-degrading enzymes from the total DNA of Ulva lactuca-associated epiphytic bacteria. First, we evaluated a method for total bacterial DNA isolation from the surface of U. lactuca thalli. Then, we designed sets of primers and used them directly for PCR amplification. The resulting PCR products were sequence-analyzed and used for expression and functional evaluation with the Escherichia coli pBAD-TOPO system. We obtained high molecular weight and good quality total bacterial DNA that served as a template to identify a fragment corresponding to an Acetyl-CoA C-Acetyltransferase (or Thiolase), and a candidate fragment for a versatile “true” lipase. We expressed the possible “true” lipase gene fragment heterologously in Escherichia coli and obtained proof of hydrolytic activity on Tributyrin, Tween-20, and Olive-oil media. This study resulted in new knowledge on U. lactuca-associated epiphytic bacteria as possible brand-new sources of enzymes such as thiolases and “true” lipases. However, future studies are required to describe the characteristics and important applications of these candidate enzymes.
Epiphytic bacteria, lipases, PCR, thiolases, Ulva lactuca
doi: 10.3354/ab00700
[2] Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiology Reviews, 37: 462-476, 2013.
doi: 10.1111/1574-6976.12011
[3] Goecke F, Labes A, Wiese J, Imhoff JF. Chemical interactions between marine macroalgae and bacteria. Marine Ecology Progress Series, 409: 267-300, 2010.
doi: 10.3354/meps08607
[4] Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F. The second skin: ecological role of epibiotic biofilms on marine organisms. Frontiers in microbiology, 3: 292, 2012.
doi: 10.3389/fmicb.2012.00292
[5] Martin M, Portetelle D, Michel G, Vandenbol M. Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Applied Microbiology and Biotechnology, 98: 2917-2935, 2014.
doi: 10.1007/s00253-014-5557-2
[6] Singh RP, Reddy CRK. Seaweed–microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiology Ecology, 88: 213-230, 2014.
doi: 10.1111/1574-6941.12297
[7] Martin M, Barbeyron T, Martin R, Portetelle D, Michel G, Vandenbol M. The Cultivable Surface Microbiota of the Brown Alga Ascophyllum nodosum is Enriched in MacroalgalPolysaccharide-Degrading Bacteria. Frontiers in microbiology, 6: 1487, 2015.
doi: 10.3389/fmicb.2015.01487
[8] Kostetsky E, Chopenko N, Barkina M, Velansky P, Sanina N. Fatty Acid Composition and Thermotropic Behavior of Glycolipids and Other Membrane Lipids of Ulva lactuca (Chlorophyta) Inhabiting Different Climatic Zones. Marine drugs, 16 (23): 494, 2018.
doi: 10.3390/md16120494
[9] Yaich H, Garna H, Besbes S, Paquot M, Blecker C, Attia H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food chemistry, 128 (4): 895-901, 2011.
doi: 10.1016/j.foodchem.2011.03.114
[10] Krohn-Molt I, Wemheuer B, Alawi M, Poehlein A, Güllert S, Schmeisser C, Streit WR. Metagenome survey of a multispecies and algae-associated biofilm reveals key elements of bacterialalgae interactions in photobioreactors. Applied and environmental microbiology, 79 (20): 6196-6206, 2013.
doi: 10.1128/AEM.01641-13
[11] Naik MM, Naik D, Charya L, Mujawar SY, Vaingankar DC. Application of Marine Bacteria Associated with Seaweed, Ulva lactuca, for Degradation of Algal Waste, Proceedings of the National Academy of Sciences. India Section B: Biological Sciences, 89 (4): 1153-1160, 2018.
doi: 10.1007/s40011-018-1034-5
[12] Jaeger KE, Kovacic F. Determination of lipolytic enzyme activities. Pseudomonas Methods and Protocols, 111-134, 2014.
doi: 10.1007/978-1-4939-0473-0_12
[13] Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39 (2): 235- 251, 2006.
doi: 10.1016/j.enzmictec.2005.10.016
[14] Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. The lid domain in lipases: Structural and functional determinant of enzymatic properties. Frontiers in bioengineering and biotechnology, 5: 16, 2017.
doi: 10.3389/fbioe.2017.00016
[15] Jaeger KE, Eggert T. Lipases for biotechnology. Current opinion in Biotechnology, 13 (4): 390-397, 2002.
doi: 10.1016/s0958-1669(02)00341-5
[16] Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, Nadeem H. Bacterial lipases: a review on purification and characterization. Progress in biophysics and molecular biology, 132: 23-34, 2018.
doi: 10.1016/j.pbiomolbio.2017.07.014
[17] Kovacic F, Babic N, Krauss U, Jaeger K. Classification of Lipolytic Enzymes from Bacteria. Aerobic Utilization of Hydrocarbons, Oils, and Lipids, 24: 255-289, 2019.
doi: 10.1007/978-3-319-50418-6_39
[18] Messaoudi A, Belguith H, Gram I, Hamida JB. Classification of EC 3.1. 1.3 bacterial true lipases using phylogenetic analysis. African journal of biotechnology, 9 (48): 8243-8247, 2010.
doi: 10.5897/AJB10.721
[19] Arpigny JL, Jaeger KE. Bacterial lipolytic enzymes: classification and properties. Biochemical Journal, 343 (1): 177-183, 1999.
doi: 10.1042/bj3430177
[20] Schaefer CM, Lu R, Nesbitt NM, Schiebel J, Sampson NS, Kisker C. FadA5 a thiolase from Mycobacterium tuberculosis: a steroid-binding pocket reveals the potential for drug development against tuberculosis. Structure, 23 (1): 21-33, 2015.
doi: 10.1016/j.str.2014.10.010
[21] Tao T, Liu X, Chang J, Xu F, Yin Y. Cloning and characterisation of the gene encoding acetyl-coa c-acetyltransferase in Matricaria chamomilla. Journal of Pharmaceutical, Chemical and Biological, 4 (3): 386-393, 2016.
https://www.jpcbs.info/2016_4_3_08_Tingting.pdf
[22] Fujita Y, Matsuoka H, Hirooka K. Regulation of fatty acid metabolism in bacteria. Molecular microbiology, 66 (4): 829-839, 2007.
doi: 10.1111 / j.1365-2958.2007.05947.x
[23] Suo Y, Ren M, Yang X, Liao Z, Fu H, Wang J. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/acetate ratio. Applied microbiology and biotechnology, 102 (10): 4511-4522, 2018.
doi: 10.1007/s00253-018-8954-0
[24] Lütke-Eversloh T. Application of new metabolic engineering tools for Clostridium acetobutylicum. Applied microbiology and biotechnology, 98 (13): 5823-5837, 2014.
doi: 10.1007/s00253-014-5785-5
[25] Haapalainen AM, Meriläinen G, Wierenga RK. The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends in biochemical sciences, 31 (1): 64-71, 2006.
doi: 10.1016/j.tibs.2005.11.011
[26] Madhavan A, Sindhu R, Parameswaran B, Sukumaran RK, Pandey A. Metagenome analysis: a powerful tool for enzyme bioprospecting. Applied biochemistry and biotechnology, 183 (2): 636- 651, 2017.
doi: 10.1007/s12010-017-2568-3
[27] Wilson MC, Piel J. Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chemistry & biology. 20 (5): 636-647, 2013.
doi: 10.1016/j.chembiol.2013.04.011
[28] Solomon S, Kachiprath B, Jayanath G, Sajeevan TP, Singh I.B., Philip R. High-quality metagenomic DNA from marine sediment samples for genomic studies through a preprocessing approach. 3 Biotech, 6 (2): 160, 2016.
doi: 10.1007/s13205-016-0482-y
[29] Alma’abadi AD, Gojobori T, Mineta K. Marine metagenome as a resource for novel enzymes. Genomics, proteomics & bioinformatics, 13 (5): 290-295, 2015.
doi: 10.1016/j.gpb.2015.10.001
[30] Kodzius R, Gojobori T. Marine metagenomics as a source for bioprospecting. Marine genomics, 24: 21-30, 2015.
doi: 10.1016/j.margen.2015.07.001
[31] Lee MH, Lee CH, Oh TK, Song JK, Yoon JH. Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Applied and environmental microbiology, 72 (11): 7406-7409, 2006.
doi: 10.1128/AEM.01157-06
[32] Chu X, He H, Guo C, Sun B. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Applied microbiology and biotechnology, 80 (4): 615-625, 2008.
doi: 10.1007/s00253-008-1566-3
[33] Jeon JH, Kim JT, Lee HS, Kim SJ, Kang SG, Choi SH, Lee JH. Novel lipolytic enzymes identified from metagenomic library of deep-sea sediment. Evidence-Based Complementary and Alternative Medicine, 2011: 2011.
doi: 10.1155/2011/271419
[34] Okamura Y, Kimura T, Yokouchi H, Meneses-Osorio M, Katoh M, Matsunaga T, Takeyama H. Isolation and characterization of a GDSL esterase from the metagenome of a marine spongeassociated bacteria. Marine biotechnology, 12 (4): 395-402, 2010.
doi: 10.1007/s10126-009-9226-x
[35] Su J, Zhang F, Sun W, Karuppiah V, Zhang G, Li Z, Jiang Q. A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World Journal of Microbiology and Biotechnology, 31 (7): 1093-1102, 2015.
doi: 10.1007/s11274-015-1859-5
[36] Martin M. Function-based Analyses of Bacterial Symbionts Associated with the Brown Alga Ascophyllum nodosum and Identification of Novel Bacterial Hydrolytic Enzyme Genes, Doctoral dissertation, Université de Liège, Liège, Belgique. 2016.
https://orbi.uliege.be/bitstream/2268/196617/1/Th%C3%A8se%20Marjolaine%20Martin.pdf
[37] Martin M, Vandermies M, Joyeux C, Martin R, Barbeyron T, Michel G, Vandenbol M. Discovering novel enzymes by functional screening of plurigenomic libraries from alga-associated Flavobacteriia and Gammaproteobacteria. Microbiological Research, 186: 52-61, 2016.
doi: 10.1016/j.micres.2016.03.005
[38] Yung PY, Burke C, Lewis M, Kjelleberg S, Thomas T. Novel antibacterial proteins from the microbial communities associated with the sponge Cymbastela concentrica and the green alga Ulva australis. Applied and environmental microbiology, 77 (4): 1512-1515, 2011.
doi: 10.1128/AEM.02038-10
[39] Burke C, Kjelleberg S, Thomas T. Selective extraction of bacterial DNA from the surfaces of macroalgae. Applied and environmental microbiology, 75 (1): 252-256, 2009.
doi: 10.1128/AEM.01630-08
[40] Fujimoto S, Nakagami Y, Kojima F. Optimal bacterial DNA isolation method using bead-beating technique. Memoirs Kyushu Univ Dep Of Health Scis Of Medical Sch, 3: 33-38, 2004.
https://www.digital-biology.co.jp/manufactured/products/ms-100/pdf/report_ms-100_07.pdf
[41] Vandeventer PE, Weigel KM, Salazar J, Erwin B, Irvine B, Doebler R, Niemz A. Mechanical Disruption of Lysis Resistant Bacterial Cells by Use of a Miniature, Low-Power, Disposable Device. Journal of Clinical Microbiology, 49 (7): 2533-2539, 2011.
doi: 10.1128/JCM.02171-10
[42] Burke C. A metagenomic analysis of the epiphytic bacterial community from the green macroalga Ulva australis. Doctoral dissertation, University of New South Wales, Australia. 2010.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.3020&rep=rep1&type=pdf
[43] Messaoudi A, Belguith H, Ghram I, Ben Hamida J. LIPABASE: a database for ‘true’ lipase family enzymes. International journal of bioinformatics research and applications, 7 (4): 390-401, 2011.
doi: 10.1504/IJBRA.2011.043770
[44] Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic acids research, 26 (7): 1628-1635, 1998.
doi: 10.1093/nar/26.7.1628
[45] Rose TM, Henikoff JG, Henikoff S. CODEHOP (COnsensusDEgenerate hybrid oligonucleotide primer) PCR primer design. Nucleic acids research, 31 (13): 3763-3766, 2003.
doi: 10.1093/nar/gkg524
[46] Jaric M, Segal J, Silva-Herzog E, Schneper L, Mathee K, Narasimhan G. Better primer design for metagenomics applications by increasing taxonomic distinguishability. BMC proceedings, 7 (1): 1, 2013.
doi: 10.1186/1753-6561-7-S7-S4
[47] Dieffenbach CW, Lowe TM, Dveksler GS. General concepts for PCR primer design. PCR Methods Appl, 3 (3): S30-S37, 1993.
doi: 10.1093/nar/gkn290
[48] Buck GA, Fox JW, Gunthorpe M, Hager KM, Naeve CW, Pon RT, Rush J. Design strategies and performance of custom DNA sequencing primers. BioTechniques, 27 (3): 528-537, 2018.
doi: 10.2144/99273rr01
[49] Kouker G, Jaeger KE. Specific and sensitive plate assay for bacterial lipases. Applied and environmental microbiology, 53 (1): 211-213, 1987.
doi: 0099-2240/87/010211-03
[50] Samad MYA, Razak CNA, Salleh AB, Yunus WZW, Ampon K, Basri M. A plate assay for primary screening of lipase activity, Journal of microbiological methods, 9 (1): 51-56, 1989.
doi: 10.1016/0167-7012(89)90030-4
[51] Lanka S, Latha JNL. A Short Review on Various Screening Methods to Isolate Potential Lipase Producers: Lipases-the Present and Future Enzymes of Biotech Industry. International Journal of Biological Chemistry, 9 (5): 207-219, 2015.
doi: 10.3923/ijbc.2015.207.219
[52] Kumar D, Kumar L, Nagar S, Raina C, Parshad R, Gupta VK. Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions. Archives of Applied Science Research, 4 (4): 1763-1770, 2012.
https://www.scholarsresearchlibrary.com/
[53] Tigerstrom RGV, Stelmaschuk S. The use of Tween 20 in a sensitive turbidimetric assay of lipolytic enzymes. Canadian journal of microbiology, 35 (4): 511-514, 1989.
doi: 10.1139 / m89-079
[54] Plou FJ, Ferrer M, Nuero OM, Calvo MV, Alcalde M, Reyes F, Ballesteros A. Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnology techniques, 12 (3): 183-186, 1998.
doi: 10.1023/A:1008809105270
[55] Corbellini VA, Scroferneker ML, Carissimi M, Stopiglia CDO, Souza TFD. Comparison of lipolytic activity of Sporothrix schenckii strains utilizing olive oil-rhodamine B and tween 80. Tecno-Lógica, 11 (2): 33-36, 2007.
http://hdl.handle.net/10183/187479
[56] Dittami SM, Duboscq-Bidot L, Perennou M, Gobet A, Corre E, Boyen C, Tonon T. Host-microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures. The ISME journal, 10 (1): 51-63, 2016.
doi: 10.1038/ismej.2015.104
[57] Comba-González NB, Ruiz-Toquica JS, Lopez-Kleine L, Montoya-Castano D. Epiphytic Bacteria of Macroalgae of the Genus Ulva and their Potential in Producing Enzymes Having Biotechnological Interest. Journal of Marine Biology & Oceanography,5 (2): 2-9, 2016.
doi: 10.4172/2324-8661.1000153
[58] Devi SG, Fathima AA, Radha S, Arunraj R, Curtis WR, Ramya M. A rapid and economical method for efficient DNA extraction from diverse soils suitable for metagenomic applications. PLoS One, 10 (7): e0132441, 2015.
doi: 10.1371/journal.pone.0132441
[59] Tujula NA, Crocetti GR, Burke C, Thomas T, Holmström C, Kjelleberg S. Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. The ISME journal, 4 (2): 301-311, 2009.
doi: 10.1038/ismej.2009.107
[60] Longford SR, Tujula NA, Crocetti GR, Holmes AJ, Holmström C, Kjelleberg S, Taylor MW. Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquatic microbial ecology, 48 (3): 217-229, 2007.
doi: 10.3354/ame048217
[61] Bag S, Saha B, Mehta O, Anbumani D, Kumar N, Dayal M, Hansen T. An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples. Scientific Reports, 6: 26775, 2016.
doi: 10.1038/srep26775
[62] Ismail A, Ktari L, Ahmed M, Bolhuis H, Bouhaouala-Zahar B, Stal LJ, El Bour M. Heterotrophic bacteria associated with the green alga Ulva rigida: identification and antimicrobial potential. Journal of Applied Phycology, 30 (5): 2883-2899, 2018.
doi: 10.1007/s10811-018-1454-x
[63] Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME Journal: Multidisciplinary Journal of Microbial Ecology, 5 (4): 590- 600, 2011.
doi: 10.1038/ismej.2010.164
[64] Dineen SM, Aranda IVR, Anders DL, Robertson JM. An evaluation of commercial DNA extraction kits for the isolation of bacterial spore DNA from soil. Journal of applied microbiology, 109 (6): 1886-1896, 2010.
doi: 10.1111/j.1365-2672.2010.04816.x
[65] Shepherd ML, Swecker JrWS, Ponder MA. Effect of Two Different Commercial DNA Extraction Kits on the Bacterial 16S Ribosomal RNA Gene Denaturing Gradient Gel Electrophoresis Profile of Arabian Gelding Feces. Journal of Equine Veterinary Science, 35 (2): 165-169, 2015.
doi: 10.1016/j.jevs.2014.12.006
[66] Yeates C, Gillings MR, Davison AD, Altavilla N, Veal DA. Methods for microbial DNA extraction from soil for PCR amplification. Biological procedures online, 1 (1): 40-47, 1998.
doi: 10.1251/bpo6
[67] Jensen MA, Fukushima M, Davis RW. DMSO and betaine greatly improve amplification of GC-rich constructs in de novo synthesis. PLoS One, 5 (6): e11024, 2010.
doi: 10.1371/journal.pone.0011024
[68] Farell EM, Alexandre G. Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Research Notes, 5 (1): 257-257, 2012.
doi: 10.1186/1756-0500-5-257
[69] Hardjasa A, Ling M, Ma K, Yu H. Investigating the effects of DMSO on PCR fidelity using a restriction digest based method. Journal of Experimental Microbiology and Immunology (JEMI), 14: 161-164, 2010.
https://www.microbiology.ubc.ca/sites/default/files/roles/drupal_ungrad/JEMI/14/JEMI14_161-164.pdf
[70] Bonk BM, Tarasova Y, Hicks MA, Tidor B, Prather KL. Rational design of thiolase substrate specificity for metabolic engineering applications. Biotechnology and bioengineering, 115 (9): 2167-2182, 2018.
doi: 10.1002/bit.26737
[71] Ratledge C. Biochemistry of microbial degradation. Springer Science and Business Media, 2012.
doi: 10.1007/978-94-011-1687-9
[72] Jimenez-Diaz L, Caballero A, Segura A. Pathways for the degradation of fatty acids in bacteria, Aerobic Utilization of Hydrocarbons, Oils and Lipids, Springer, 1-23, 2017.
doi: 10.1007/978-3-319-39782-5_42-1
[73] Fox AR, Soto G, Mozzicafreddo M, Garcia AN, Cuccioloni M, Angeletti M, Ayub ND. Understanding the function of bacterial and eukaryotic thiolases II by integrating evolutionary and functional approaches. Gene, 533 (1): 5-10, 2014.
doi: 10.1016/j.gene.2013.09.096
[74] Harijan RK. Coenzyme-A dependent catalysis: An overview of thiolase superfamily enzymes and drug discovery. Research on Chronic Diseases, 1 (2): 017-019, 2017.
https://www.openaccessjournals.com/articles
[75] Soto G, Stritzler M, Lisi C, Alleva K, Pagano ME, Ardila F, Ayub ND. Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation. Journal of experimental botany, 62 (15): 5699-5711, 2011.
doi: 10.1093/jxb/err287
[76] Nesbitt M, Yang X, Fontán P, Kolesnikova I, Smith I, Sampson S, Dubnau E. A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infection and immunity, 78 (1): 275-282, 2010.
doi: 10.1128/IAI.00893-09
[77] Martines ACM, Van Eunen K, Reijngoud DJ, Bakker BM. The promiscuous enzyme medium-chain 3-keto-acyl CoA thiolase triggers a vicious cycle in fatty-acid beta-oxidation. PLoS computational biology, 13 (4): e1005461, 2017.
doi: 10.1371/journal.pcbi.1005461
[78] Wiesenborn DP, Rudolph FB, Papoutsakis ET. Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Applied and environmental microbiology, 54 (11): 2717-2722, 1988.
https://aem.asm.org/content/54/11/2717
[79] Mann MS, Lütke-Eversloh T. Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum. Biotechnology and bioengineering, 110 (3): 887-897, 2013.
doi: 10.1002/bit.24758
[80] Chung A, Liu Q, Ouyang SP, Wu Q, Chen GQ. Microbial production of 3-hydroxydodecanoic acid by pha operon and fadBA knockout mutant of Pseudomonas putida KT2442 harboring tesB gene. Applied microbiology and biotechnology, 83 (3): 513-519, 2009.
doi: 10.1007/s00253-009-1919-6
[81] Kim EJ, Son HF, Kim S, Ahn JW, Kim KJ. Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16. Biochemical and biophysical research communications, 444 (3): 365-369, 2014.
doi: 10.1016/j.bbrc.2014.01.055
[82] Gao J, Vo MT, Ramsay JA, Ramsay BA. Overproduction of MCL-PHA with high 3-hydroxydecanoate Content. Biotechnology and bioengineering, 115 (2): 390-400, 2018.
doi: 10.1002/bit.26474
[83] Inui H, Ishikawa T, Tamoi M. Wax ester fermentation and its application for biofuel production, Euglena: Biochemistry, Cell and Molecular Biology, Springer, 269-283, 2017.
doi: 10.1007/978-3-319-54910-1_13
[84] Nandavaram A, Sagar AL, Madikonda AK, Siddavattam D. Proteomics of Sphingobium indicum B90A for a deeper understanding of hexachlorocyclohexane (HCH) bioremediation, Reviews on environmental health, 31 (1): 57-61, 2016.
doi: 10.1515/reveh-2015-0042
[85] Bazinet AL, Cummings MP. A comparative evaluation of sequence classification programs. BMC bioinformatics, 13 (1): 92, 2012.
doi: 10.1186/1471-2105-13-92
[86] Patel U, Chandpura J, Chauhan K, Gupte S. Screening and isolation of an organic solvent tolerant lipase producing bacteria from various oil contaminated sites. Indian J. Appl. Microbiol, 21: 22-36, 2018.
http://www.ijamicro.com/21-1-2018/Unisha%20patel.pdf
[87] Lee LP, Karbul HM, Citartan M, Gopinath SC, Lakshmipriya T, Tang TH. Lipase-secreting Bacillus species in anoil-contaminated habitat: promising strains to alleviate oil pollution. BioMed research international, 2015.
doi: 10.1155/2015/820575
[88] Classen T, Kovacic F, Lauinger B, Pietruszka J, Jaeger KE. Screening for Enantioselective Lipases, Hydrocarbon and Lipid Microbiology Protocols, Springer 37-69, 2016.
doi: 10.1007/8623_2016_218
[89] Zottig X, Meddeb-Mouelhi F, Beauregard M. Development of a high-throughput liquid state assay for lipase activity using natural substrates and rhodamine B. Analytical biochemistry, 496: 25-29, 2016.
doi: 10.1016 / j.ab.2015.11.020
[90] Kumar D, Kumar L, Nagar S, Raina C, Parshad R, Gupta VK. Isolation, production and application of lipase/esterase from Bacillus sp. strain DVL43. Journal of Microbiology and Biotechnology Research, 2: 521-528, 2017.
https://pdfs.semanticscholar.org/f959/bb3f9d549c47f24860f9d61eb4f5110082cc.pdf%20
[91] Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF. GDSL family of serine esterases/lipases. Progress in lipid research, 43 (6): 534-552, 2004.
doi: 10.1016/j.plipres.2004.09.002
[92] Ramnath L, Sithole B, Govinden R. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Canadian journal of microbiology, 63 (3): 179-192, 2016.
doi: 10.1139/cjm-2016-0447
[93] Seghal-Kiran G, Nishanth-Lipton A, Kennedy J, Dobson AD, Selvin J. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioengineered, 5 (5): 305-318, 2014.
doi: 10.4161/bioe.29898
[94] Kiran GS, Shanmughapriya S, Jayalakshmi J, Selvin J, Gandhimathi R, Sivaramakrishnan S, Natarajaseenivasan K. Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioprocess and Biosystems Engineering, 31 (5): 483-492, 2008.
doi: 10.1007/s00449-007-0186-0
[95] Selvin J, Kennedy J, Lejon DP, Kiran GS, Dobson AD. Isolation identification and biochemical characterization of a novel halotolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microbial cell factories, 11 (1): 72, 2012.
doi: 10.1186/1475-2859-11-72
[96] Joseph D, Chakraborty K. Production and Biotechnological Application of Extracellular Alkalophilic Lipase from Marine Macroalga-Associated Shewanella algae to Produce Enriched C 20-22 n-3 Polyunsaturated Fatty Acid Concentrate. Applied biochemistry and biotechnology, 185 (1): 55-71, 2017.
doi: 10.1007/s12010-017-2636-8
[97] López-López O, Cerdan M, Gonzalez-Siso M. New extremophilic lipases and esterases from metagenomics. Current Protein and Peptide Science, 15 (5): 445-455, 2014.
doi: 10.2174/1389203715666140228153801
[98] Yuan D, Lan D, Xin R, Yang B, Wang Y. Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007. Biotechnology and applied biochemistry, 63 (1): 41-50, 2016.
doi: 10.1002/bab.1338
[99] De Santi C, Leiros HKS, Di Scala A, de Pascale D, Altermark B, Willassen NP. Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp. Extremophiles, 20 (3): 323-336, 2016.
doi: 10.1007/S00792-016-0824-Z
[100] Hassan SW, Abd El Latif HH, Ali SM. Production of cold active lipase by free and immobilized marine Bacillus cereus HSS: Application in wastewater treatment. Frontiers in microbiology, 9: 2377, 2018.
[101] Esakkiraj P, Prabakaran G, Maruthiah T, Immanuel G, Palavesam A. Purification and Characterization of Halophilic Alkaline Lipase from Halobacillus sp. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 86 (2): 309- 314, 2016.
doi: 10.1007/s40011-014-0437-1
[102] Park SH, Kim SJ, Park S, Kim HK. Characterization of Organic Solvent-Tolerant Lipolytic Enzyme from Marinobacter lipolyticus Isolated from the Antarctic Ocean. Applied biochemistry and biotechnology, 187 (3): 1046-1060, 2019.
doi: 10.1007/s12010-018-2865-5
[103] Deng D, Zhang Y, Sun A, Liang J, Hu Y. Functional characterization of a novel marine microbial GDSL lipase and its utilization in the resolution of (±)-1-phenylethanol. Applied biochemistry and biotechnology, 179 (1): 75-93, 2016.
doi: 10.1007/s12010-016-1980-4
[104] Urbanek AK, Rymowicz W, Mirończuk AM. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied microbiology and biotechnology, 102 (18): 7669-7678, 2018.
doi: 10.1007/s00253-018-9195-y
[105] Hama S, Noda H, Kondo A. How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Current opinion in biotechnology, 50: 57-64, 2018.
doi: 10.1016/j.copbio.2017.11.001
[106] Aykin E, Omuzbuken B, Kacar A. Antibiofilm potential of enzymes as ecofriendly antifouling additives. Fresenius environmental bulletin, 27 (6): 4093-4103, 2018.
https://www.researchgate.net/publication/330441108