Chemical synthesis and steady state characterization of a nanocrystalline lithium cobalt oxide
PDF

Keywords

Nanomaterial
Li-Ion Batteries
nanocrystalline
steady-state

How to Cite

Chemical synthesis and steady state characterization of a nanocrystalline lithium cobalt oxide. (2020). Universitas Scientiarum, 25(2), 203-225. https://doi.org/10.11144/Javeriana.SC25-2.csas
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

Lithium cobalt oxide (LiCoO2) is one of the most relevant components in lithium-ion batteries. The array of sought-after features of LiCoO2 depends on its synthesis method. In this work we synthesized and characterized a nanocrystalline LiCoO2 oxide obtained with a wet chemistry synthesis method. The oxide obtained was a homogeneous powder in the nanometric range (5-8 nm) and exhibited a series of improved properties. Characterization by FTIR and UV-Vis techniques led to identifying citrate species as main products in the first step of the synthesis process. X-ray diffraction (XRD), Raman, and transmission electron microscopy (TEM) characterizations led to identifying a pure crystalline phase of the synthesized LiCoO2 oxide. Steady state electrical characterization and solid-state impedance spectroscopy determined the high conductance of the synthesized oxide. All these features are desirable in the design of cathodes for lithium ion batteries.

PDF

Zaghib K, Mauger A, Groult H, Goodenough J, Julien C. Advanced electrodes for high power Li-ion batteries. Materials, 6: 1028-1049.2013.

doi: 10.3390/ma6031028

Zhao J, Wang L, El X, Wan C, Jiang C. J. Kinetic Investigation of LiCoO2 by Electrochemical Impedance Spectroscopy (EIS). International Journal of Electrochemical Science, 5: 478-488, 2010.

Hu G, Cao J, Peng Z, Cao Y, Du K. Enhanced high-voltage properties of LiCoO2 coated with Li[Li0.2Mn0.6Ni0.2]O2. Electrochimica Acta, 149: 49-55, 2014.

doi: 10.1016/j.electacta.2014.10.072

Villca J, Vargas M, Yapu W, Blanco M, Benavente F, Cabrera S. New Pyrolytic/Atrano Route for LiCoO2 y LiMn2O4 Cathodic Electrodes Syntheses. Revista Boliviana De Química, 31: 82-85, 2014.

Jeong S, Park S, Cho J. High-Performance, Layered, 3D-LiCoO2 Cathodes with a Nanoscale Co3O4 Coating via Chemical Etching. Advanced Energy Materials, 1: 68-372, 2011.

doi: 10.1002/aenm.201100029

Shuai H, Chunhui W, Ling Z, Xifeng Z, Li S, Jun Z, Chunxian Z, Chenghuan H, Xiaoming X, Lishan L. Hydrothermal-assisted synthesis of surface aluminum-doped LiCoO2 nanobricks for high-rate lithium-ion batteries. Ceramics International, 44: 1499515000, 2018.

doi: 10.1016/j.ceramint.2018.05.128

Yang WD, Hsieh CY, Chuang HJ, Chen YS. Preparation and characterization of nanometric-sized LiCoO2 cathode materials for lithium batteries by a novel sol-gel method. Ceramics International, 36 (1): 135-140, 2010.

doi: 10.1016/j.ceramint.2009.07.011

Bezza I, Luais E, Ghamouss F, Zaghrioui M, Tran-van F, Sakai J.LiCoO2 with double porous structure obtained by electrospray deposition and its evaluation as an electrode for lithium-ion batteries. Journal of Alloys and Compounds, 805: 19-25, 2019.

doi: 10.1016/j.jallcom.2019.07.062

Abdul-Aziz NA, Abdullah TK, Mohamad AA. Synthesis of LiCoO2 Prepared by Sol-gel Method. Procedia Chemistry, 19: 861864, 2016.

doi: 10.1016/j.proche.2016.03.114

Chao D, Wang L, Shen W, Guo S. Effects of the lateral sizes and basal plane structure of graphene on the electrochemical properties of LiCoO2. Journal of Alloys and Compounds, 785: 557562, 2019.

doi: 10.1016/j.jallcom.2019.01.126

Rodrigues S, Munichandraiah N, Shukla A. Novel solutioncombustion synthesis of LiCoO2 and its characterization as cathode material for lithium-ion cells. Journal of Power Sources, 102(1-2): 322-325, 2001.

doi: 10.1016/S0378-7753(01)00770-4

Kalyani P, Kalaiselvi V, Muniyandi N. A new solution combustion route to synthesize LiCoO2 and LiMn2O4. Journal of Power Sources, 111 (2): 232-238, 2002.

doi: 10.1016/S0378-7753(02)00307-5

Santiago EI, Andrade AVC, Paiva-Santos CO, Bulhões L. Structural and electrochemical properties of LiCoO2 prepared by combustion synthesis. Solid State Ionics, 158: 91-102, 2003.

doi: 10.1016/S0167-2738(02)00765-8

Pietrzak TK, Wasiucionek M, Michalski TK, Kaleta A, Garbarczyk JE. Highly conductive cathode materials for Li-ion batteries prepared by thermal nanocrystallization of selected oxide glasses. Materials Science and Engineering B, 213: 140-147, 2016.

doi: 10.1016/j.mseb.2016.05.008

Xin H, Jun W, Haiping J, Kloepsch R. Ionic liquid-assisted solvothermal synthesis of hollow Mn2O3 anode and LiMn2O4 cathode materials for Li-ion batteries. Journal of Power Sources, 293: 306-311, 2015.

doi: 10.1016/j.jpowsour.2015.04.106

Zuo D, Tian G, Li X, Chen D, Shu K. Recent progress in surface coating of cathode materials for lithium ion secondary batteries. Journal of Alloys and Compounds, 706: 24-40, 2017.

doi: 10.1016/j.jallcom.2017.02.230

H Ji, G Yang, X Miao, A Hong. Efficient microwave hydrothermal synthesis of nanocrystalline orthorhombic LiMnO2 cathodes for lithium batteries. Electrochimica Acta, 55: 3392, 2010.

doi: 10.1016/j.electacta.2010.01.010

Kwon T, Ohnishi T, Mitsuishi K, Ozawa T, Takada K. Synthesis of LiCoO2 epitaxial thin films using a sol-gel method. Journal of Power Sources, 274: 417-423, 2015.

doi: 10.1016/j.jpowsour.2014.10.070

Fumo D, Jurado J, Segadães A, Frade J. Combustion synthesis of iron-substituted strontium titanate perovskites, Materials Research Bulletin, 32: 1459-1470, 1997.

doi: 10.1016/S0025-5408(97)00117-7

Gómez-Cuaspud J, Schmal. M. Nanostructured metal oxides obtained by means polymerization-combustion at low temperatura for CO selective oxidation. International Journal of Hydrogen Energy, 38: 7458-7468, 2013. doi: 10.1016/j.ijhydene.2013.04.024

Palacio L. Métodos de síntesis de nuevos materiales basados en metales de transición. Revista Facultad de Ingeniería, 32: 51-61, 2004.

Cai Y, Huangn Y, Wang X, Jian D, Tang X. Long cycle life, high rate capability of truncated octahedral LiMn2O4 cathode materials synthesized by a solid-state combustion reaction for lithium ion batteries. Ceramics International, 40: 14039-14043, 2014.

doi: 10.1016/j.ceramint.2014.05.130

Xu F, Yan H, Chen J, He M, Zhang Z, Fan C, Liu G. Improving electrochemical properties of LiCoO2 by enhancing thermal decomposition of Cobalt and Lithium carbonates to synthesize ultrafine powders. Ceramics International, 43: 6494-6501, 2017.

doi: 10.1016/j.ceramint.2017.02.071

Gómez-Cuaspud J, Valencia-Ríos J. Síntesis De Óxidos Tipo Perovskita, Mediante Polimerización Con Ácido Cítrico Y Combustión Con Glicina. Revista Colombiana de Química, 38: 289302, 2009.

Cruz F, Gómez-Cuaspud JA. Synthesis of praseodymium doped cerium oxides by the polymerization combustion method for application as anodic component in SOFC devices. Journal of Physics: Conference Series, 687, 2016.

doi: 10.1088/1742-6596/687/1/012046

Marcilla A, Gómez M, Beltrán D, Berenguer IB. TGA-FTIR study of the thermal and SBA-15-catalytic pyrolysis of potassium citrate under nitrogen and air atmospheres. Journal of Analytical and Applied Pyrolysis, 125: 144-152, 2017.

doi: 10.1016/j.jaap.2017.04.007

Trettenhahn G, Köberl A. Anodic decomposition of citric acid on gold and stainless steel electrodes: An in situ-FTIR spectroscopic investigation. Electrochimica Acta, 52 (7): 27162722, 2007.

doi: 10.1016/j.electacta.2006.09.028

Chinarro E, Jurado J. R, Colomer M. T. Synthesis of ceria-based electrolyte nanometric powders by urea combustion technique. Instituto de Cerámica y Vidrio, ICV-CSIC, C/Kelsen No 5, 28049 Madrid, Spain Available online 2 April 2007.

doi: 10.1016/j.jeurceramsoc.2007.02.007

Farhikhteh S, Maghsoudipour A, Raissi B. Synthesis of nanocrystalline YSZ (ZrO2-8Y2O3) powder by polymerized complex method. Journal of Alloys and Compounds, 491(1-2): 402405, 2010.

doi: 10.1016/j.jallcom.2009.10.196

Romero M, Pardo H, Faccio R, Suescun L, Vázquez S, Laborda I, Fernández-Werner L, Acosta A, Castiglioni J, Mombrú A. W. A Study on the Polymer Precursor Formation and Microstructure Evolution of Square-Shaped (La0.5Ba0.5)(Mn0.5Fe0.5)O3 Ceramic Nanoparticles. Journal of Ceramic Science and Technology, 06: 221230, 2015.

doi: 10.4416/JCST2015-00005

Ganapathy S, Adams BD, Stenou G, Anastasaki MS, Goubitz K, Miao XF, Nazar LF, Wagemaker M. Nature of Li2O2 Oxidation in a Li-O2 Battery Revealed by Operando X-ray Diffraction. Journal of the American Chemical Society, 136: 16335-16344, 2014.

doi: 10.1021/ja508794r

Gao J, Cai X, Wang J, Hou M, Lai L, Zhang L. Recent progress in hierarchically structured O2-cathodes for Li-O2 batteries. Chemical Engineering Journal, 352: 972-995, 2018.

doi: 10.1016/j.cej.2018.06.014

Cabrera S, Benavente F, Vargas M, Flores JL, Ortega M, Villca J, Mamani R, Leiva N, Luna M, Yapu W, Blanco M, Palenque ER, Balanza R. Perspectivas En El Procesamiento De Materiales - Electrodos Para Baterías De Ion Litio En Bolivia. Revista Boliviana de Química, 29:1, 2012.

Levi M, Gamolsky K, Aurbach D, Heider U, Oesten R. On electrochemical impedance measurements of LiXCo0.2Ni0.8O2 and LiXNiO2 intercalation electrodes. Electrochemical Acta, 45: 1781-1789, 2000.

doi: 10.1016/S0013-4686(99)00402-8

Kalyani P, Kalaiselvi N. Various Aspects of LiNiO2 chemistry: A review. Science and technology of advanced materials, 6: 689, 2005.

doi: 10.1016/j.stam.2005.06.001

Burba C, Shaju K, Bruce P, Frech R. Infrared and Raman spectroscopy of nanostructured LT-LiCoO2 cathodes for Li-ion rechargeable batteries. Vibrational Spectroscopy, 51: 248-250, 2009.

doi: 10.1016/j.vibspec.2009.06.002

Kempaiah R, Vasudevamurthy G, Subramanian A. Scanning probe microscopy based characterization of battery materials, interfaces, and processes. Nano Energy, 65: 103925, 2019.

doi: 10.1016/j.nanoen.2019.103925

Matsuda Y, Kuwata N, Okawa T, Dorai A, Kawamura J. In situ Raman spectroscopy of LiXCoO2 cathode in Li/Li3PO4/ LiCoO2 all-solid-state thin-film lithium battery. Solid State Ionics, 335: 7-14, 2019.

doi: 10.1016/j.ssi.2019.02.010

Otoyama M, Ito Y, Hayashi A, Tatsumisago M. Raman imaging for LiCoO2 composite positive electrodes in all-solidstate lithium batteries using Li2S-P2S5 solid electrolytes. Journal of Power Sources, 302: 419-425, 2016.

doi: 10.1016/j.jpowsour.2015.10.040

Porthault H, Baddour-Hadjean R, Le Cras F, Bourbon C, Franger S. Raman study of the spinel-to-layered phase transformation in sol-gel LiCoO2 cathode powders as a function of the post-annealing temperature. Vibrational Spectroscopy, 62: 152-158, 2012.

doi: 10.1016/j.vibspec.2012.05.004

Lin J, Zeng C, Wang L, Pan Y, Su C. Y. Self-standing MOFderived LiCoO2 nanopolyhedron on Au-coated copper foam as advanced 3D cathodes for lithium-ion batteries. Applied Materials Today, 19: 100565, 2020.

doi: 10.1016/j.apmt.2020.100565

Julien C, Letranchant C, Rangan S, Lemal M, Ziolkiewics S, Castro-García S, El Fahr L, Benkaddour M. Layered LiNi0.5Co0.5O2 cathode materials grown by soft-chemistry via various solution methods. Materials Science and Engineering, 76: 145. 2000.

doi: 10.1016/s0921-5107(00)00431-1

Escobar L, Haro E. Structure and electrochemistry of thinfilm oxides grown by laser-pulsed deposition. Materials Chemistry and Physics, 68: 210-216, 2001.

doi: 10.1007/BF02419223

Okubo M, Hosono E, Kim J, Enomoto M. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. Journal of the American Chemical Society, 129: 7444-7452, 2007.

doi: 10.1021/ja0681927

Freitas B, Siqueira J, da Costa L, Ferreira G, Resende J. Synthesis and Characterization of LiCoO2 from Different Precursors by Sol Gel Method. Journal of the Brazilian Chemical Society, 28(11): 2254-2266, 2017.

doi: 10.21577/0103-5053.20170077

Myung S, Khalil A, Yang-Kook S. Nanostructured cathode materials for rechargeable lithium batteries. Journal of Power Sources, 283: 219-236, 2015.

doi: 10.1016/j.jpowsour.2015.02.119

Guo Z, Konstantinov P, Wang G, Liu H, Dou S. Preparation of orthorhornbic LiMnO2 material via the sol-gel process. Journal of Power Sources, 119: 221 225, 2003.

doi: 10.1016/S0378-7753(03)00237-4

Ellmer K. Transparent conductive Zinc oxide, Springer Series in materials science, Ed. Springer Berlin Heidelberg, 2008.

Zuo D, Tian G, Li X, Chen D, Shu K. Recent progress in surface coating of cathode materials for lithium ion secondary batteries. Journal of Alloys and Compounds, 706: 24-40, 2017.

doi: 10.1016/j.jallcom.2017.02.230

Yina H, Brodardb P, Sugnauxa C, Fromm KM, Kwona NH. Impact of composite structure and morphology on electronic and ionic conductivity of carbon contained LiCoO2 cathode. Electrochimica Acta, 134: 215-221, 2014.

Choi WG, Yoon SG. Structural and electrical properties of LiCoO2 thin-film cathodes deposited on planar and trench structures by liquid-delivery metal-organic chemical vapour deposition. Journal of Power Sources, 125 (2): 236-241, 2004.

doi: 10.1016/j.jpowsour.2003.08.014

Park MS, Hyun SH, Nam SC. Mechanical and electrical properties of a LiCoO2 cathode prepared by screen-printing for a lithiumion micro-battery. Electrochimica Acta, 52(28): 7895-7902, 2007.

doi: 10.1016/j.electacta.2007.06.041

Xue J, Jiang C, Pan B, Zou Z. Constructing multidimensional conducting networks on LiCoO2 cathode for enhanced rate performance and cycle stability. Journal of Electroanalytical Chemistry, 850, 2019.

doi: 10.1016/j.jelechem.2019.113419

Univ. Sci. is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.