Published Jun 16, 2020


Google Scholar
Search GoogleScholar

Jairo A. Gómez-Cuaspud

Ariatna Y Neira-Guio

Enrique Vera-López

Luís C. Canaría-Camargo



Lithium cobalt oxide (LiCoO2) is one of the most relevant components in lithium-ion batteries. The array of sought-after features of LiCoO2 depends on its synthesis method. In this work we synthesized and characterized a nanocrystalline LiCoO2 oxide obtained with a wet chemistry synthesis method. The oxide obtained was a homogeneous powder in the nanometric range (5-8 nm) and exhibited a series of improved properties. Characterization by FTIR and UV-Vis techniques led to identifying citrate species as main products in the first step of the synthesis process. X-ray diffraction (XRD), Raman, and transmission electron microscopy (TEM) characterizations led to identifying a pure crystalline phase of the synthesized LiCoO2 oxide. Steady state electrical characterization and solid-state impedance spectroscopy determined the high conductance of the synthesized oxide. All these features are desirable in the design of cathodes for lithium ion batteries.


Nanomaterial, Li-Ion Batteries, nanocrystalline, steady-state

[1] Zaghib K, Mauger A, Groult H, Goodenough J, Julien C. Advanced electrodes for high power Li-ion batteries. Materials, 6: 1028-1049.2013.
doi: 10.3390/ma6031028

[2] Zhao J, Wang L, El X, Wan C, Jiang C. J. Kinetic Investigation of LiCoO2 by Electrochemical Impedance Spectroscopy (EIS). International Journal of Electrochemical Science, 5: 478-488, 2010.

[3] Hu G, Cao J, Peng Z, Cao Y, Du K. Enhanced high-voltage properties of LiCoO2 coated with Li[Li0.2Mn0.6Ni0.2]O2. Electrochimica Acta, 149: 49-55, 2014.
doi: 10.1016/j.electacta.2014.10.072

[4] Villca J, Vargas M, Yapu W, Blanco M, Benavente F, Cabrera S. New Pyrolytic/Atrano Route for LiCoO2 y LiMn2O4 Cathodic Electrodes Syntheses. Revista Boliviana De Química, 31: 82-85, 2014.

[5] Jeong S, Park S, Cho J. High-Performance, Layered, 3D-LiCoO2 Cathodes with a Nanoscale Co3O4 Coating via Chemical Etching. Advanced Energy Materials, 1: 68-372, 2011.
doi: 10.1002/aenm.201100029

[6] Shuai H, Chunhui W, Ling Z, Xifeng Z, Li S, Jun Z, Chunxian Z, Chenghuan H, Xiaoming X, Lishan L. Hydrothermal-assisted synthesis of surface aluminum-doped LiCoO2 nanobricks for high-rate lithium-ion batteries. Ceramics International, 44: 1499515000, 2018.
doi: 10.1016/j.ceramint.2018.05.128

[7] Yang WD, Hsieh CY, Chuang HJ, Chen YS. Preparation and characterization of nanometric-sized LiCoO2 cathode materials for lithium batteries by a novel sol-gel method. Ceramics International, 36 (1): 135-140, 2010.
doi: 10.1016/j.ceramint.2009.07.011

[8] Bezza I, Luais E, Ghamouss F, Zaghrioui M, Tran-van F, Sakai J.LiCoO2 with double porous structure obtained by electrospray deposition and its evaluation as an electrode for lithium-ion batteries. Journal of Alloys and Compounds, 805: 19-25, 2019.
doi: 10.1016/j.jallcom.2019.07.062

[9] Abdul-Aziz NA, Abdullah TK, Mohamad AA. Synthesis of LiCoO2 Prepared by Sol-gel Method. Procedia Chemistry, 19: 861864, 2016.
doi: 10.1016/j.proche.2016.03.114

[10] Chao D, Wang L, Shen W, Guo S. Effects of the lateral sizes and basal plane structure of graphene on the electrochemical properties of LiCoO2. Journal of Alloys and Compounds, 785: 557562, 2019.
doi: 10.1016/j.jallcom.2019.01.126

[11] Rodrigues S, Munichandraiah N, Shukla A. Novel solutioncombustion synthesis of LiCoO2 and its characterization as cathode material for lithium-ion cells. Journal of Power Sources, 102(1-2): 322-325, 2001.
doi: 10.1016/S0378-7753(01)00770-4

[12] Kalyani P, Kalaiselvi V, Muniyandi N. A new solution combustion route to synthesize LiCoO2 and LiMn2O4. Journal of Power Sources, 111 (2): 232-238, 2002.
doi: 10.1016/S0378-7753(02)00307-5

[13] Santiago EI, Andrade AVC, Paiva-Santos CO, Bulhões L. Structural and electrochemical properties of LiCoO2 prepared by combustion synthesis. Solid State Ionics, 158: 91-102, 2003.
doi: 10.1016/S0167-2738(02)00765-8

[14] Pietrzak TK, Wasiucionek M, Michalski TK, Kaleta A, Garbarczyk JE. Highly conductive cathode materials for Li-ion batteries prepared by thermal nanocrystallization of selected oxide glasses. Materials Science and Engineering B, 213: 140-147, 2016.
doi: 10.1016/j.mseb.2016.05.008

[15] Xin H, Jun W, Haiping J, Kloepsch R. Ionic liquid-assisted solvothermal synthesis of hollow Mn2O3 anode and LiMn2O4 cathode materials for Li-ion batteries. Journal of Power Sources, 293: 306-311, 2015.
doi: 10.1016/j.jpowsour.2015.04.106

[16] Zuo D, Tian G, Li X, Chen D, Shu K. Recent progress in surface coating of cathode materials for lithium ion secondary batteries. Journal of Alloys and Compounds, 706: 24-40, 2017.
doi: 10.1016/j.jallcom.2017.02.230

[17] H Ji, G Yang, X Miao, A Hong. Efficient microwave hydrothermal synthesis of nanocrystalline orthorhombic LiMnO2 cathodes for lithium batteries. Electrochimica Acta, 55: 3392, 2010.
doi: 10.1016/j.electacta.2010.01.010

[18] Kwon T, Ohnishi T, Mitsuishi K, Ozawa T, Takada K. Synthesis of LiCoO2 epitaxial thin films using a sol-gel method. Journal of Power Sources, 274: 417-423, 2015.
doi: 10.1016/j.jpowsour.2014.10.070

[19] Fumo D, Jurado J, Segadães A, Frade J. Combustion synthesis of iron-substituted strontium titanate perovskites, Materials Research Bulletin, 32: 1459-1470, 1997.
doi: 10.1016/S0025-5408(97)00117-7

[20] Gómez-Cuaspud J, Schmal. M. Nanostructured metal oxides obtained by means polymerization-combustion at low temperatura for CO selective oxidation. International Journal of Hydrogen Energy, 38: 7458-7468, 2013. doi: 10.1016/j.ijhydene.2013.04.024

[21] Palacio L. Métodos de síntesis de nuevos materiales basados en metales de transición. Revista Facultad de Ingeniería, 32: 51-61, 2004.

[22] Cai Y, Huangn Y, Wang X, Jian D, Tang X. Long cycle life, high rate capability of truncated octahedral LiMn2O4 cathode materials synthesized by a solid-state combustion reaction for lithium ion batteries. Ceramics International, 40: 14039-14043, 2014.
doi: 10.1016/j.ceramint.2014.05.130

[23]Xu F, Yan H, Chen J, He M, Zhang Z, Fan C, Liu G. Improving electrochemical properties of LiCoO2 by enhancing thermal decomposition of Cobalt and Lithium carbonates to synthesize ultrafine powders. Ceramics International, 43: 6494-6501, 2017.
doi: 10.1016/j.ceramint.2017.02.071

[24] Gómez-Cuaspud J, Valencia-Ríos J. Síntesis De Óxidos Tipo Perovskita, Mediante Polimerización Con Ácido Cítrico Y Combustión Con Glicina. Revista Colombiana de Química, 38: 289302, 2009.

[25] Cruz F, Gómez-Cuaspud JA. Synthesis of praseodymium doped cerium oxides by the polymerization combustion method for application as anodic component in SOFC devices. Journal of Physics: Conference Series, 687, 2016.
doi: 10.1088/1742-6596/687/1/012046

[26] Marcilla A, Gómez M, Beltrán D, Berenguer IB. TGA-FTIR study of the thermal and SBA-15-catalytic pyrolysis of potassium citrate under nitrogen and air atmospheres. Journal of Analytical and Applied Pyrolysis, 125: 144-152, 2017.
doi: 10.1016/j.jaap.2017.04.007

[27] Trettenhahn G, Köberl A. Anodic decomposition of citric acid on gold and stainless steel electrodes: An in situ-FTIR spectroscopic investigation. Electrochimica Acta, 52 (7): 27162722, 2007.
doi: 10.1016/j.electacta.2006.09.028

[28]Chinarro E, Jurado J. R, Colomer M. T. Synthesis of ceria-based electrolyte nanometric powders by urea combustion technique. Instituto de Cerámica y Vidrio, ICV-CSIC, C/Kelsen No 5, 28049 Madrid, Spain Available online 2 April 2007.
doi: 10.1016/j.jeurceramsoc.2007.02.007

[29] Farhikhteh S, Maghsoudipour A, Raissi B. Synthesis of nanocrystalline YSZ (ZrO2-8Y2O3) powder by polymerized complex method. Journal of Alloys and Compounds, 491(1-2): 402405, 2010.
doi: 10.1016/j.jallcom.2009.10.196

[30]Romero M, Pardo H, Faccio R, Suescun L, Vázquez S, Laborda I, Fernández-Werner L, Acosta A, Castiglioni J, Mombrú A. W. A Study on the Polymer Precursor Formation and Microstructure Evolution of Square-Shaped (La0.5Ba0.5)(Mn0.5Fe0.5)O3 Ceramic Nanoparticles. Journal of Ceramic Science and Technology, 06: 221230, 2015.
doi: 10.4416/JCST2015-00005

[31]Ganapathy S, Adams BD, Stenou G, Anastasaki MS, Goubitz K, Miao XF, Nazar LF, Wagemaker M. Nature of Li2O2 Oxidation in a Li-O2 Battery Revealed by Operando X-ray Diffraction. Journal of the American Chemical Society, 136: 16335-16344, 2014.
doi: 10.1021/ja508794r

[32] Gao J, Cai X, Wang J, Hou M, Lai L, Zhang L. Recent progress in hierarchically structured O2-cathodes for Li-O2 batteries. Chemical Engineering Journal, 352: 972-995, 2018.
doi: 10.1016/j.cej.2018.06.014

[33]Cabrera S, Benavente F, Vargas M, Flores JL, Ortega M, Villca J, Mamani R, Leiva N, Luna M, Yapu W, Blanco M, Palenque ER, Balanza R. Perspectivas En El Procesamiento De Materiales - Electrodos Para Baterías De Ion Litio En Bolivia. Revista Boliviana de Química, 29:1, 2012.

[34] Levi M, Gamolsky K, Aurbach D, Heider U, Oesten R. On electrochemical impedance measurements of LiXCo0.2Ni0.8O2 and LiXNiO2 intercalation electrodes. Electrochemical Acta, 45: 1781-1789, 2000.
doi: 10.1016/S0013-4686(99)00402-8

[35]Kalyani P, Kalaiselvi N. Various Aspects of LiNiO2 chemistry: A review. Science and technology of advanced materials, 6: 689, 2005.
doi: 10.1016/j.stam.2005.06.001

[36] Burba C, Shaju K, Bruce P, Frech R. Infrared and Raman spectroscopy of nanostructured LT-LiCoO2 cathodes for Li-ion rechargeable batteries. Vibrational Spectroscopy, 51: 248-250, 2009.
doi: 10.1016/j.vibspec.2009.06.002

[37] Kempaiah R, Vasudevamurthy G, Subramanian A. Scanning probe microscopy based characterization of battery materials, interfaces, and processes. Nano Energy, 65: 103925, 2019.
doi: 10.1016/j.nanoen.2019.103925

[38] Matsuda Y, Kuwata N, Okawa T, Dorai A, Kawamura J. In situ Raman spectroscopy of LiXCoO2 cathode in Li/Li3PO4/ LiCoO2 all-solid-state thin-film lithium battery. Solid State Ionics, 335: 7-14, 2019.
doi: 10.1016/j.ssi.2019.02.010

[39] Otoyama M, Ito Y, Hayashi A, Tatsumisago M. Raman imaging for LiCoO2 composite positive electrodes in all-solidstate lithium batteries using Li2S-P2S5 solid electrolytes. Journal of Power Sources, 302: 419-425, 2016.
doi: 10.1016/j.jpowsour.2015.10.040

[40] Porthault H, Baddour-Hadjean R, Le Cras F, Bourbon C, Franger S. Raman study of the spinel-to-layered phase transformation in sol-gel LiCoO2 cathode powders as a function of the post-annealing temperature. Vibrational Spectroscopy, 62: 152-158, 2012.
doi: 10.1016/j.vibspec.2012.05.004

[41] Lin J, Zeng C, Wang L, Pan Y, Su C. Y. Self-standing MOFderived LiCoO2 nanopolyhedron on Au-coated copper foam as advanced 3D cathodes for lithium-ion batteries. Applied Materials Today, 19: 100565, 2020.
doi: 10.1016/j.apmt.2020.100565

[42] Julien C, Letranchant C, Rangan S, Lemal M, Ziolkiewics S, Castro-García S, El Fahr L, Benkaddour M. Layered LiNi0.5Co0.5O2 cathode materials grown by soft-chemistry via various solution methods. Materials Science and Engineering, 76: 145. 2000.
doi: 10.1016/s0921-5107(00)00431-1

[43] Escobar L, Haro E. Structure and electrochemistry of thinfilm oxides grown by laser-pulsed deposition. Materials Chemistry and Physics, 68: 210-216, 2001.
doi: 10.1007/BF02419223

[44]Okubo M, Hosono E, Kim J, Enomoto M. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. Journal of the American Chemical Society, 129: 7444-7452, 2007.
doi: 10.1021/ja0681927

[45] Freitas B, Siqueira J, da Costa L, Ferreira G, Resende J. Synthesis and Characterization of LiCoO2 from Different Precursors by Sol Gel Method. Journal of the Brazilian Chemical Society, 28(11): 2254-2266, 2017.
doi: 10.21577/0103-5053.20170077

[46] Myung S, Khalil A, Yang-Kook S. Nanostructured cathode materials for rechargeable lithium batteries. Journal of Power Sources, 283: 219-236, 2015.
doi: 10.1016/j.jpowsour.2015.02.119

[47] Guo Z, Konstantinov P, Wang G, Liu H, Dou S. Preparation of orthorhornbic LiMnO2 material via the sol-gel process. Journal of Power Sources, 119: 221 225, 2003.
doi: 10.1016/S0378-7753(03)00237-4

[48] Ellmer K. Transparent conductive Zinc oxide, Springer Series in materials science, Ed. Springer Berlin Heidelberg, 2008.

[49] Zuo D, Tian G, Li X, Chen D, Shu K. Recent progress in surface coating of cathode materials for lithium ion secondary batteries. Journal of Alloys and Compounds, 706: 24-40, 2017.
doi: 10.1016/j.jallcom.2017.02.230

[50] Yina H, Brodardb P, Sugnauxa C, Fromm KM, Kwona NH. Impact of composite structure and morphology on electronic and ionic conductivity of carbon contained LiCoO2 cathode. Electrochimica Acta, 134: 215-221, 2014.

[51] Choi WG, Yoon SG. Structural and electrical properties of LiCoO2 thin-film cathodes deposited on planar and trench structures by liquid-delivery metal-organic chemical vapour deposition. Journal of Power Sources, 125 (2): 236-241, 2004.
doi: 10.1016/j.jpowsour.2003.08.014

[52] Park MS, Hyun SH, Nam SC. Mechanical and electrical properties of a LiCoO2 cathode prepared by screen-printing for a lithiumion micro-battery. Electrochimica Acta, 52(28): 7895-7902, 2007.
doi: 10.1016/j.electacta.2007.06.041

[53] Xue J, Jiang C, Pan B, Zou Z. Constructing multidimensional conducting networks on LiCoO2 cathode for enhanced rate performance and cycle stability. Journal of Electroanalytical Chemistry, 850, 2019.
doi: 10.1016/j.jelechem.2019.113419
How to Cite
Gómez-Cuaspud, J. A., Neira-Guio, A. Y., Vera-López, E., & Canaría-Camargo, L. C. (2020). Chemical synthesis and steady state characterization of a nanocrystalline lithium cobalt oxide. Universitas Scientiarum, 25(2), 203–225.
Material Science