Abstract
Cobalt and iron MCM-41 catalysts were synthesized through an in-situ incorporation process starting from commercial iron and cobalt nitrates. The incorporation was confirmed by diffuse reflectance UV spectroscopy (DRS-UV) inspecting the cobalt and iron silicate-like photon absorption features and comparing with pure MCM-41-Co and MCM-41-Fe catalysts. Additionally it was found that the incorporation of cobalt and iron does not compromise the mesoporous structure of MCM-41 as confirmed by N2 adsorption isotherms. All catalysts showed high surface areas (∼1100 m2g−1). Catalysts performance was conducted in a simple methane chemical vapor deposition (CVD) set up at 800 °C to produce single wall carbon nanotubes (SWCNT) under a constant flow of methane for 30 min. CVD products were characterized by thermogravimetric analysis (TGA) and Raman spectroscopy, finding that the iron content in the catalysts favors the selectivity and yield of graphitic-like structures, and confirming the presence of SWCNT by the appearance of a characteristic radial breathing mode (RBM) signals. These results were supported by Density Functional Theory (DFT) simulations of the methane dissociation (CH4 +TM → H3C –TMH) over Con (n = 1–5) and ComFe (m = 1–4), finding a different activation energy trend where ComFe (m = 1–4) clusters have the lower activation energy. The DFT study also revealed a charge difference (δC − δTM) higher in the case of dissociation over ComFe (m = 1–4) which may lead to an electrostatic stabilization of the transition metal, diminishing the activation energy of those clusters and leading to a faster carbon uptake.
MS Dresselhaus, G Dresselhaus, JC Charlier, E Hernandez. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362(1823): 2065-2098, 2004.
doi: 10.1098/rsta.2004.1430
Prabhakar R Bandaru. Journal of Nanoscience and Nanotechnology, 7(4): 1239-1267, 2007.
doi: 10.1166/jnn.2007.307
M Cadek, JN Coleman, KP Ryan, V Nicolosi, G Bister, A Fonseca, JB Nagy, K Szostak, F Béguin, WJ Blaut. Nano Letters, 4(2): 353-356, 2004.
doi: 10.1021/NL035009O
Erik T Thostenson, Zhifeng Ren, Tsu-Wei Chou. Composites Science and Technology, 61(13): 1899-1912, 2001. doi: 10.1016/S0266-3538(01)00094-X
Min-Feng Yu, Bradley S Files, Sivaram Arepalli, Rodney S Ruoff. Physical Review Letters, 84(24): 5552-5555, 2000.
doi: 10.1103/PhysRevLett.84.5552
AR Tameev, L Licea Jiménez, L Ya Pereshivko, RW Rychwalski, AV Vannikov. Journal of Physics: Conference Series, 61(1): 1152- 1156, 2007.
doi: 10.1088/1742-6596/61/1/228
Shenqiang Ren, Marco Bernardi, Richard R Lunt, Vladimir Bulovic, Jeffrey C Grossman, Silvija Gradečak. Nano letters,
doi: 10.1021/nl202796u
Tom Grace, LePing Yu, Christopher Gibson, Daniel Tune, Huda Alturaif, Zeid Al Othman, Joseph Shapter. Nanomaterials, 6(3): 52, 2016.
doi: 10.3390/nano6030052
T Du, SA Getty, Enrique Cobas, MS Fuhrer, T Dürkop, SA Getty, Enrique Cobas, MS Fuhrer. Extraordinary Mobility in Semiconducting Carbon Nanotubes. Nano Letters, 4(1): 35-39, 2003.
doi: 10.1021/nl034841q
Rebecca S Park, Gage Hills, Joon Sohn, Subhasish Mitra, Max M. Shulaker, H-S PhilipWong. ACS Nano, 11(5): 4785-4791, 2017.
doi: 10.1021/acsnano.7b01164
Jing Kong, Alan M Cassell, Hongjie Dai. Chemical Physics Letters, 292(4-6): 567-574, 1998.
doi: 10.1016/S0009-2614(98)00745-3
Li Wei, Shihe Bai, Wenkuan Peng, Yang Yuan, Rongmei Si, Kunli Goh, Rongrong Jiang, Yuan Chen. Carbon, 66: 134-143, 2014.
doi: 10.1016/j.carbon.2013.08.051
D Ciuparu, Y Chen, S Lim, GL Haller, L Pfefferle. Journal of Physical Chemistry B, 108(2): 503-507, 2004.
doi: 10.1021/jp036453i
Bartosz Kruszka, Artur P. Terzyk, L.M. Hoyos-Palacio, Ag García, JF Pérez-Robles, J González, HV Martínez Tejada. IOP Conference Series: Materials Science and Engineering, 59(1): 012005, 2014.
Yoshikazu Homma, Yoshiro Kobayashi, Toshio Ogino, Daisuke Takagi, Roichi Ito, Yung Joon Yj Yung Joon Jung, Pulickel M Pm Ajayan. The Journal of Physical Chemistry B, 107(44): 12161-12164,2003.
doi: 10.1021/jp0353845
Codruta Zoican Loebick, Darlington Abanulo, Magda Majewska, Gary L Haller, Lisa D Pfefferle. Effect of reaction temperature in the selective synthesis of single wall carbon nanotubes (SWNT) on a bimetallic CoCr-MCM-41 catalyst. Applied Catalysis A: General, 374(1-2): 213-220, 2010.
doi: 10.1016/j.apcata.2009.12.010
Yiming Li, Woong Kim, Yuegang Zhang, Marco Rolandi, Dunwei Wang, and Hongjie Dai. Growth of single walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. Journal of Physical Chemistry B, 105(46): 11424-11431, 2001.
doi: 10.1021/jp012085b
László Vanyorek, Danilo Loche, Hajnalka Katona, Maria Francesca Casula, Anna Corrias, Zoltán Kónya, Ákos Kukovecz, Imre Kiricsi. Optimization of the catalytic chemical vapor deposition synthesis of multiwall carbon nanotubes on FeCo(Ni)/SiO2 aerogel catalysts by statistical design of experiments. Journal of Physical Chemistry C, 115(13): 5894-5902, 2011.
doi: 10.1021/jp111860x
Codruta Zoican Loebick, Sungchul Lee, Salim Derrouiche, Mark Schwab, Yuan Chen, Gary L Haller, Lisa Pfefferle. Journal of Catalysis, 271: 358-369, 2010.
doi: 10.1016/j.jcat.2010.02.021
Frank Neese. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(1): 73-78, 2012.
doi: 10.1002/wcms.81
Ansgar Schäfer, Christian Huber, Reinhart Ahlrichs. The Journal of Chemical Physics, 100(8): 5829-5835, 1994.
doi: 10.1063/1.467146
Cynthia J Jameson, Angel C. de Dios. The Journal of Chemical Physics, 97(1): 417-434, 1992.
doi: 10.1063/1.463586
Carlo Adamo, Vincenzo Barone. Journal of Chemical Physics, 110(13): 6158-6170, 1999.
doi: 10.1063/1.478522
Stephen Brunauer, PH Emmett, Edward Teller. Journal of the American Chemical Society, 60(1): 309-319, 1938.
doi: 10.1021/ja01269a023
Elliott P Barrett, Leslie G Joyner, Paul P Halenda. Journal of the American Chemical Society, 73(1): 373-380, 1951.
doi: 10.1021/ja01145a126
MD Donohue, GL Aranovich. Advances in Colloid and Interface Science, 76-77: 137-152, 1998.
doi: 10.1016/S0001-8686(98)00044-X
Sangyun Lim, Dragos Ciuparu, Chanho Pak, Frank Dobek, Yuan Chen, David Harding, Lisa Pfefferle, Gary Haller. The Journal of Physical Chemistry B, 107(40): 11048-11056, 2003.
doi: 10.1021/jp0304778
XS Zhao, GQ Lu, AK Whittaker, GJ Millar, HY Zhu. Journal of Physical Chemistry B, 101(33): 6525-6531, 1997.
doi: 10.1021/jp971366+
L Pfefferle, G Haller, Y Chen, D Ciuparu, S Lim, YH Yang. Abstracts of Papers of the American Chemical Society, 229: 15565- 15571, 2005.
doi: 10.1021/jp048067m
Younes Brik, Mohamed Kacimi, Mahfoud Ziyad, François Bozon-Verduraz. Journal of Catalysis, 202(1): 118-128, 2001.
doi: 10.1006/jcat.2001.3262
Ettireddy P Reddy, Bo Sun, Panagiotis G Smirniotis. Journal of Physical Chemistry B, 108(44): 17198-17205, 2004.
doi: 10.1021/JP047419M
Brian J Landi, Cory D Cress, Chris M Evans, Ryne P Raffaelle. Chemistry of Materials, 17(26): 6819-6834, 2005.
doi: 10.1021/cm052002u
RA Jishi, L Venkataraman, MS Dresselhaus, G Dresselhaus. Chemical Physics Letters, 209(1-2): 77-82, 1993.
doi: 10.1016/0009-2614(93)87205-H
G Dresselhaus A Jorio, MA Pimenta, AG Souza Filho, R Saito, MS Dresselhaus. New journal of Physics, 5(1):1-11, 2012.
doi: 10.1088/1367-2630/5/1/139
IT Ghampson, C Newman, L Kong, E Pier, KD Hurley, RA Pollock, BR Walsh, B Goundie, J Wright, MC Wheeler, RW Meulenberg, WJ Desisto. Applied Catalysis A, General, 388(1-2): 57-67, 2010.
doi: 10.1016/j.apcata.2010.08.028
Jingde Li, Eric Croiset, Luis Ricardez-Sandoval. Effects of metal elements in catalytic growth of carbon nanotubes/graphene: A first principles DFT study. Applied Surface Science, 317: 923-928, 2014.
doi: 10.1016/j.apsusc.2014.09.008
Xiaobin Hao, Qiang Wang, Debao Li, Riguang Zhang, Baojun Wang. RSC Adv., 4(81): 43004-43011, 2014.
doi: 10.1039/C4RA04050C
Qiao Sun, Zhen Li, MengWang, Aijun Du, Sean C Smith. Chemical Physics Letters, 550: 41-46, 2012.
doi: 10.1016/j.cplett.2012.08.057
Univ. Sci. is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights. Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.