Effect of pH on the growth of three lactic acid bacteria strains isolated from sour cream
PDF

Keywords

english

How to Cite

Effect of pH on the growth of three lactic acid bacteria strains isolated from sour cream. (2020). Universitas Scientiarum, 25(2), 341-358. https://doi.org/10.11144/Javeriana.SC25-2.eopo
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

Lactic acid bacteria (LAB) have an important role in the food industry because they are used in the production of fermented fo ds. To use these microorganisms in the food industry, it is necessary to obtain a high amount of biomass. One of the most important environmental factors in the growth of LAB is pH. Most of LAB species can tolerate a pH below 5.0, however, a suboptimal pH is expected to limit LAB growth. For this reason, the LAB strains Leuconostoc mesenteroides 67-1, Lactobacillus plantarum 60-1, and Streptococcus infantarius 46-3, isolated from sour cream, were grown in culture media under four different intial pH values to determine their optimal growth pH. Growth was assesed via colony-forming unit (CFU/ml) determination. We found that the growth of each LAB was affected by culture medium pH. We determined that the setpoints of pH for Leuconostoc mesenteroides 67-1, Streptococcus infantarius 46-3, and Lactobacillus plantarum 60-1 were of 4.5 (± 0.5), 5.5 (± 0.5), and 6.0 (± 0.5), respectively. We thus conclude that the growth of these LAB strains is pH-dependent (p < 0.05).

PDF

Oliveira AS, Weinberg ZG, Ogunade IM, Cervantes AAP, Arriola KG, Jiang Y, Kim D, Li X, Gonçalves MCM, Vyas D. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. Journal of Dairy Science, 100 (6): 4587-4603, 2017.

doi: 10.3168 / jds.2016-11815

Adamberg K, Kask S, Laht TM, Paalme T. The effect of temperature and pH on the growth of lactic acid bacteria: A pH-auxostat study. International Journal of Food Microbiology, 85 (1-2): 171-183, 2003.

doi: 10.1016/s0168-1605(02)00537-8

Colombo M, Castilho NPA, Todorov SD, Nero LA. Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiology, 18 (1): 1-13, 2018.

doi: 10.1186/s12866-018-1356-8

Bielecka M. Probiotics in Food, Chemical and Functional Properties of Food Components. Third Edition. 413-426, 2006.

doi: 10.1201/9781420009613.ch16

WHO-World Health Organization. Probiotics in food; Health and nutritional properties and guidelines for evaluation. Food and nutrition paper, 85, 2001.

Barbosa J, Borges S, and Teixeira P. Influence of sub-lethal stresses on the survival of lactic acid bacteria after spray-drying in orange juice. Food Microbiology, 52: 77-83, 2015.

doi: 10.1016/j.fm.2015.06.010

Motato KE, Milani C, Ventura M, Valencia FE, Ruas-Madiedo P, Delgado S. Bacterial diversity of the Colombian fermented

milk ‘Suero Costeño’ assessed by culturing and high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons. Food Microbiology, 68: 129-136, 2017.

doi: 10.1016/j.fm.2017.07.011

Holzapfel WH, Bjorkroth J, Dicks LMT. Leuconostoc. Bergey’s Manual of Systematics of Archaea and Bacteria. pp. 1-23, 2015.

doi: 10.1002/9781118960608.gbm00607

Tymczyszyn EE, Sosa N, Gerbino E, Hugo A, GómezZavaglia A, Schebor C. Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galactooligosaccharides matrix. International Journal of Food Microbiology, 155 (3): 217-221, 2012.

doi: 10.1016/j.ijfoodmicro.2012.02.008

Barbosa J, Borges S, and Teixeira P. Influence of sub-lethal stresses on the survival of lactic acid bacteria after spray drying in orange juice. Food Microbiology, 52: 77-83, 2015.

doi: 10.1016/j.fm.2015.06.010

Motato Rocha KE. Potencial tecnológico de bacterias ácido lácticas aisladas de "Suero Costeño (crema ácida de leche) de los municipios de Caucasia (Antioquia) y Planeta Rica (Córdoba). Doctoral dissertation. Universidad de Antioquia, Medellín, 2018.

Valencia-García FE, Motato-Rocha KE, Vera-Peña MY, Sepúlveda-Lindarte ML. Kinetic parameters of lactic acid bacterial isolated from fermented milk ‘suero costeño. DYNA, 85 (206): 155-161, 2018.

doi: 10.15446/dyna.v85n206.70995

Madigan MT, Martinko JM, Parker J. Brock Biología de los microorganismos. Sexta Edicion. Mexico: Prentice Hall, 1993.

Drosinos EH, Mataragas M, Nasis P, Galiotou, M, Metaxopoulos J. Growth and bacteriocin production kinetics of Leuconostoc mesenteroides E131. Journal of Applied Microbiology, 99: 1314- 1223, 2005.

doi: 10.1111/j.1365-2672.2005.02735.x

Kaur J, Lee S, Sharma A, and Park YS. DNA profiling of Leuconostoc mesenteroides strains isolated from fermented foods and farm produce in Korea by repetitive-element PCR. Food Science Biotechnology, 26 (6): 1667-1673, 2017.

doi: 10.1007/s10068-017-0189-9

Yuwono SD, Kokugan T. Study of the effects of temperature and pH on lactic acid production from fresh cassava roots in tofu liquid waste by Streptococcus bovis. Biochemical Engineering Journal, 40 (1): 175-183, 2008.

doi: 10.1016/j.bej.2007.12.004

Beal C, Louvet P, Corrieu G. Influence of controlled pH and temperature on the growth and acidification of pure cultures of Streptococcus thermophilus 404 and Lactobacillus bulgaricus 398. Applied Microbiology and Biotechnology, 32 (2): 148-154, 1989.

doi: 10.1002/bit.260380112

Cooper-Bribiesca B, Navarro-Ocaña A, Díaz-Ruiz G, AguilarOsorio G, Rodríguez-Sanoja R, and Wacher C. Lactic Acid Fermentation of Arabinoxylan From Nejayote by Streptococcus infantarius ssp. infantarius 25124 Isolated From Pozol. Frontiers in Microbiology, 9 (December): 1-10, 2018.

doi: 10.3389/fmicb.2018.03061

Campanero C, Muñoz-Atienza E, Diep DB, Feito J, Arbulu S, del Campo R, Nes IF, Hernandez PE, Herranz C, Cintas LM.

Biochemical, genetic and transcriptional characterization of multibacteriocin production by the anti-pneumococcal dairy

strain Streptococcus infantarius LP90, PLoS One, 15- e0229417 (3): 1-19, 2020.

doi: 10.1371/journal.pone.0229417

Jimenez Villeda PY, Rodriguez Hernandez AI, Lopez Cuellar M del R, Franco Hernandez MJ, and Chavarria Hernandez N.

Elaboration and characterization of pectin-gellan films added with concentrated supernatant of Streptococcus infantarius

fermentations , and EDTA : effects on the growth of Escherichia coli , Staphylococcus aureus and Listeria monocytogenes in a Mexican cheese medium, and physical-mechanical properties. Food Science and Technology, 39 (2): 436-443. 2018.

doi: 10.1590/fst.32717

Domínguez-Ramírez LL, Rodríguez-Saoja R, Tecante A, GarcíaGaribay M, Sainz T, Wacher C. Tolerance to acid and alkali by Streptococcus infantarius subsp. infantarius strain 25124 isolated from fermented nixtamal dough : Pozol . Studies in APT broth. Journal Food Microbiology, 90 (July 2019): 103458, 2020.

doi: 10.1016/j.fm.2020.103458

dos Santos KMO, de Matos CR, Salles HO, de Melo BDG, Arellano K, Holzapfel WH, Todorov SD. Exploring Beneficial/Virulence Properties of Two Dairy-Related Strains of Streptococcus infantarius subsp. Infantarius. Probiotics

Antimicrobial Proteins, 2020.

doi: 10.1007/s12602-020-09637-8

Fu W, Mathews AP. Lactic acid production from lactose by Lactobacillus plantarum: Kinetic model and effects of pH,

substrate, and oxygen. Biochemical Engineering Journal, 3 (3): 163- 170, 1999.

doi: 10.1016/S1369-703X(99)00014-5

Hammes WP, Hertel C. Bergey´s Manual of Systematic Bacteriology, Genus I. Lactobacillus Beijerinck 1901, 212AL, 55.

doi: 10.1002/9781118960608.gbm00604

Guergoletto KB, Busanello M, Garcia S. Influence of carrier agents on the survival of Lactobacillus reuteri LR92 and the

physicochemical properties of fermented juçara pulp produced by spray drying. LWT - Food Science and Technology, 80: 321-327, 2017.

doi: 10.1016/j.lwt.2017.02.038

Fernandez B, Le Lay C, Jean J, Fliss I. Growth, acid production and bacteriocin production by probiotic candidates under

simulated colonic conditions. Journal of Applied Microbiology, 114 (3): 877-885, 2013.

doi: 10.1111/jam.12081

Xu Z, He H, Zhang S, Guo T, Kong J. Characterization of feruloyl esterases produced by the four lactobacillus species:

L. amylovorus, L. acidophilus, L. farciminis and L. fermentum, isolated from ensiled corn stover. Frontiers in Microbiology, 8

(JUN): 1-11, 2017.

doi: 10.3389/fmicb.2017.00941

Leroy F, de Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology, 15 (2): 67-78, 2004.

doi: 10.1016/j.tifs.2003.09.004

Tripathi MK, Giri SK. Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9 (1): 225-241, 2014.

doi: 10.1016/j.jff.2014.04.030

Björkroth J, Koort J. Lactic Acid Bacteria: Taxonomy and Biodiversity BT - Reference Module in Food Science. Elsevier, 2016.

doi: 10.1016/B978-0-08-100596-5.00864-7

Rosyidah A, Julistiono H. Potential probiotic evaluation of two Lactobacillus plantarum strains isolated from Indonesian

fermented food and fruit. Journal of Biological Researches, 22 (2): 56-61, 2017.

doi: 10.23869/bphjbr.22.2.20174

Huang S, Vignolles ML, Chen XD, le Loir Y, Jan G, Schuck P, Jeantet R. Spray drying of probiotics and other food-grade bacteria: A review, Trends Food Science and Technology, 63: 1-17, 2017.

doi: 10.1016/j.tifs.2017.02.007

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Universitas Scientiarum