Published Dec 31, 2020



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Leonardo Posada

Ivan C. Acosta

Lina Zárate

Paula Rodríguez

Mónica Gabriela Huertas

María Mercedes Zambrano

##plugins.themes.bootstrap3.article.details##

Abstract

Klebsiella pneumoniae is an opportunistic pathogen associated with nosocomial infections. Persister cells are a fraction of a bacterial population that can escape antibiotic treatment and are associated with antibiotic therapy failure. In this work, we analyzed persistent cells in planktonic cultures and biofilms using10 K. pneumoniae clinical isolates and four different antibiotic types. The isolates had different antibiotic susceptibility profiles that did not correlate with their capacity to form biofilms. Persister cells were found under all conditions tested, although their population numbers varied depending on the antibiotic used. A larger number of persister cells were found in biofilms than in planktonic cultures. Antibiotic treatment with trimethoprim-sulfamethoxazole resulted in the largest persister cell sub-population compared with other antibiotics tested, while ciprofloxacin was the antibiotic that produced fewer persister cells. These results indicate that K. pneumoniae clinical isolates vary not only in their susceptibility to antibiotics but also in properties relevant to diseases, such as biofilm formation and persister cell populations.

Keywords

Persistence, biofilm, antibiotic resistance, Klebsiella pneumoniae

References
[1] Lee C-R, Lee JH, Park KS, Jeon JH, Kim YB, Cha C-J, Jeong BC, Lee SH. Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants and Resistance Mechanisms, Frontiers in Cellular and Infection Microbiology, 7, 483, 2017.
doi: 10.3389/fcimb.2017.00483

[2] Pitout JDD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance, Antimicrobial Agents and Chemotherapy, 59, 5873-84, 2015.
doi: 10.1128/AAC.01019-15

[3] Wyres KL, Holt KE. Klebsiella pneumoniae Population Genomics and Antimicrobial-Resistant Clones, Trends in Microbiology, 24, 944-56, 2016.
doi: 10.1016/j.tim.2016.09.007

[4] Santajit S, Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens, BioMed Research International, 2016, 1-8, 2016.
doi: 10.1155/2016/2475067

[5] Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Review of Anti-Infective Therapy, 11, 297-308, 2013.
doi: 10.1586/eri.13.12

[6] Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of
150 patients from Wuhan, China. Intensive Care Medicine, 46, 846-8, 2020.
doi: 10.1007/s00134-020-05991-x

[7] He Y, Li W, Wang Z, Chen H, Tian L, Liu D. Nosocomial infection among patients with COVID-19: A retrospective data
analysis of 918 cases from a single center in Wuhan, China. Infection Control and Hospital Epidemiology, 1-2, 2020.
doi: 10.1017/ice.2020.126

[8] WHO. Antimicrobial Resistance. p. 2014.
Retrieved from: https://www.who.int/drugresistance/documents/surveillancereport/en/

[9] WHO. Global Action Plan on Antimicrobial Resistance. Geneva. p. 2015.
Retrieved from: https://www.who.int/antimicrobial-resistance/publications/globalaction-plan/en/

[10] Sanchez CJ, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, Murray CK. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infectious Diseases, 13, 47, 2013.
doi: 10.1186/1471-2334-13-47

[11] Percival SL, Suleman L, Donelli G. Healthcare-Associated infections, medical devices and biofilms: Risk, tolerance and
control. Journal of Medical Microbiology, 64, 323-34, 2015.
doi: 10.1099/jmm.0.000032

[12] Michiels JE, Van den Bergh B, Verstraeten N, Michiels J. Molecular mechanisms and clinical implications of bacterial
persistence. Drug Resistance Updates, 29, 76-89, 2016.
doi: 10.1016/j.drup.2016.10.002

[13] Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nature Reviews Microbiology, 15, 453-64, 2017.
doi: 10.1038/nrmicro.2017.42

[14] Bigger J. Treatment of Staphylococcal Infections With Penicillin By Intermittent Sterilisation. The Lancet, 244, 497-500,
1944.
doi: 10.1016/S0140-6736(00)74210-3

[15] Kester JC, Fortune SM. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Critical Reviews in Biochemistry and Molecular Biology, 49, 91-101, 2014.
doi: 10.3109/10409238.2013.869543

[16] Lewis K. Persister Cells. Annual Review of Microbiology, 64, 357- 72, 2010.
doi: 10.1146/annurev.micro.112408.134306

[17] Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial Persistence as a P henotypic Switch. Science, 305, 1622-5, 2004.
doi: 10.1126/science.1099390

[18] Michiels JE, Van Den Bergh B, Verstraeten N, Fauvart M, Michiels J. In vitro emergence of high persistence upon periodic aminoglycoside challenge in the ESKAPE pathogens. Antimicrobial Agents and Chemotherapy, 60, 4630-7, 2016.
doi: 10.1128/AAC.00757-16

[19] Ren H, He X, Zou X, Wang G, Li S, Wu Y. Gradual increase in antibiotic concentration affects persistence of Klebsiella
pneumoniae. The Journal of Antimicrobial Chemotherapy, 70, 3267-72, 2015.
doi: 10.1093/jac/dkv251

[20] Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ. Antibiotic tolerance facilitates the evolution of resistance. Science, 355, 826-30, 2017.
doi: 10.1126/science.aaj2191

[21] Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nature Reviews Microbiology
13, 497-508, 2015.
doi: 10.1038/nrmicro3491

[22] Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, Jenney A, Connor TR, Hsu LY, Severin J, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proceedings of the National Academy of Sciences of the United States of America, 112, E3574-81, 2015.
doi: 10.1073/pnas.1501049112

[23] Vuotto C, Longo F, Balice MP, Donelli G, Varaldo and PE. Antibiotic Resistance Related to Biofilm Formation in Klebsiella
pneumoniae. Pathogens, 3, 743-58, 2014.
doi: 10.3390/pathogens3030743

[24] Yang D, Zhang Z. Biofilm-forming Klebsiella pneumoniae strains have greater likelihood of producing extended- spectrum b-lactamases. Journal of Hospital Infection, 369-71, 2008.
doi: 10.1016/j.jhin.2008.01.006

[25] Luna CM, Rodriguez-Noriega E, Bavestrello L, Guzmán- Blanco M. Gram-negative infections in adult intensive care units of latin america and the Caribbean. Critical Care Research and Practice, 2014, 480463, 2014
doi: 10.1155/2014/480463

[26] Leal AL. Boletín Informativo GREBO Número 9, Bogotá, 2017. ISSN No. 2027-0860. Bogotá. 2017

[27] Balestrino D, Ghigo JM, Charbonnel N, Haagensen JAJ, Forestier C. The characterization of functions involved in the
establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides.
Environmental Microbiology, 10, 685-701, 2008.
doi: 10.1111/j.1462-2920.2007.01491.x

[28] Huertas MG , Zárate L, Acosta IC, Posada L, Cruz DP, Lozano M, Zambrano MM. Klebsiella pneumoniae y fiRNB operon
affects biofilm formation, polysaccharide production and drug susceptibility. Microbiology, 160, 2595-606, 2014.
doi: 10.1099/mic.0.081992-0

[29] Solano C, García B, Valle J, Berasain C, Ghigo JM, Gamazo C., Lasa I. Genetic analysis of Salmonella enteritidis biofilm
formation: Critical role of cellulose. Molecular Microbiology, 43, 793-808, 2002.
doi: 10.1046/j.1365-2958.2002.02802.x

[30] Zogaj X, Bokranz W, Nimtz M, Römling U. Production of cellulose and curli fimbriae by members of the family
Enterobacteriaceae isolated from the human gastrointestinal tract. Infection and Immunity, 71, 4151-8, 2003.
doi: 10.1128/IAI.71.7.4151-4158.2003

[31] CLSI. Performance standards for antimicrobial susceptibility testing: 25th informational supplement. In: Wayne PA, editor. CLSI document M100-S25

[32] Harrison JJ, Stremick Ca, Turner RJ, Allan ND, Olson ME, Ceri H. Microtiter susceptibility testing of microbes growing
on peg lids: a miniaturized biofilm model for high-throughput screening. Nature Protocols, 5, 1236-54, 2010.
doi: 10.1038/nprot.2010.71

[33] Singla S, Harjai K, Chhibber S. Susceptibility of different phases of biofilm of Klebsiella pneumoniae to three different
antibiotics. The Journal of Antibiotics, 66, 61-6, 2013.
doi: 10.1038/ja.2012.101

[34] Pfeltz RF, Schmidt JL, Wilkinson BJ. A microdilution plating method for population analysis of antibiotic-resistant
staphylococci. Microbial Drug Resistance, 7, 289-95, 2001.
doi: 10.1089/10766290152652846

[35] O’Toole GA. Microtiter Dish Biofilm Formation Assay. Journal of Visualized Experiments, pii: 2437, 2011.
doi: 10.3791/2437

[36] Anderl JN, Franklin MJ, & Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm
resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy, 44, 1818-1824, 2000.
doi: 10.1128/aac.44.7.1818-1824.2000

[37] Singh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. The Journal of Antimicrobial Chemotherapy, 65, 1955-8, 2010.
doi: 10.1093/jac/dkq257

[38] Jacoby GA, Han P. Detection of extended-spectrum betalactamases in clinical isolates of Klebsiella pneumoniae and
Escherichia coli. Journal of Clinical Microbiology, 34, 908-11, 1996

[39] Hall CW, Mah T-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews, 41, 276-301, 2017.
doi: 10.1093/femsre/fux010

[40] Wood TK. Combatting bacterial persister cells. Biotechnology and Bioengineering, 113, 476-83, 2016.
doi: 10.1002/bit.25721

[41] Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL, Penterman J, Singh PK, Chopp DL, Packman AI, Parsek MR. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environmental
Microbiology, 15, 2865-78, 2013.
doi: 10.1111/1462-2920.12155

[42] Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews Microbiology, 14, 320-30, 2016.
doi: 10.1038/nrmicro.2016.34

[43] Evans DR, Griffith MP, Sundermann AJ, Shutt KA, Saul MI, Mustapha MM, Marsh JW, Cooper VS, Harrison LH, Van
Tyne D. Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. ELife 9:e53886, 2020.
doi: 10.7554/eLife.53886

[44] Gefen O, Balaban NQ. The importance of being persistent: Heterogeneity of bacterial populations under antibiotic stress: Review article. FEMS Microbiology Reviews, 704-17, 2009.
doi: 10.1111/j.1574-6976.2008.00156.x

[45] Barth VC, Rodrigues BA, Bonatto GD, Gallo SW, Pagnussatti VE, Ferreira CAS, De Oliveira SD. Heterogeneous persister cells formation in Acinetobacter baumannii. PLoS ONE, 8, 8-12, 2013.
doi: 10.1371/journal.pone.0084361

[46] Hofsteenge N, van Nimwegen E, Silander OK. Quantitative analysis of persister fractions suggests different mechanisms of formation among environmental isolates of E. coli. BMC Microbiology, 13, 25, 2013.
doi: 10.1186/1471-2180-13-25

[47] Eliopoulos GM, Huovinen P. Resistance to Trimethoprim- Sulfamethoxazole. Clinical Infectious Diseases, 32, 1608-14, 2001.
doi: 10.1086/320532

[48] Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrobial Agents and Chemotherapy, 55, 4943-60, 2011.
doi: 10.1128/AAC.00296-11

[49] Lee JS, Choi J-Y, Chung ES, Peck KR, Ko KS. Variation in the formation of persister cells against meropenem in Klebsiella
pneumoniae bacteremia and analysis of its clinical features. Diagnostic Microbiology and Infectious Disease, 95, 114853,
2019.
doi: 10.1016/j.diagmicrobio.2019.06.005

[50] Abokhalil, Rana N, Elkhatib, Walid F, Aboulwafa, Mohammad M, & Hassouna NA. Persisters of Klebsiella pneumoniae and Proteus mirabilis: A Common Phenomenon and Different Behavior Profiles. Current Microbiology, 77, 1233-1244, 2020.
doi: 10.1007/s00284-020-01926-3

[51] Zalis EA, Nuxoll AS, Manuse S, Clair G, Radlinski LC, Conlon BP, Adkins J, Lewis K. Stochastic Variation in Expression of
the Tricarboxylic Acid Cycle Produces Persister Cells. MBio, 10, e01930-19, 2019.
doi: 10.1128/mBio.01930-19

[52] Wang Y, Bojer MS, George SE, Wang Z, Jensen PR, Wolz C, Ingmer H. Inactivation of TCA cycle enhances Staphylococcus
aureus persister cell formation in stationary phase. Scientific Reports, 8, 2018.
doi: 10.1038/s41598-018-29123-0

[53] Ma C, Sim S, Shi W, Du L, Xing D, Zhang Y. Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiology Letters, 303, 33-40, 2010.
doi: 10.1111/j.1574-6968.2009.01857.x

[54] Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP, Bumann D, Camilli A, Collins
JJ, et al. Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 17, 441-8, 2019.
doi: 10.1038/s41579-019-0196-3
How to Cite
Posada, L., Acosta, I. C., Zárate, L., Rodríguez, P., Huertas, M. G., & Zambrano, M. M. (2020). Biofilm and persister cell fomation variability in clinical isolates of Klebsiella pneumoniae in Colombia. Universitas Scientiarum, 25(3), 545–571. https://doi.org/10.11144/Javeriana.SC25-3.bapc
Section
Clinical Microbiology

Most read articles by the same author(s)