Published Sep 28, 2020


Google Scholar
Search GoogleScholar

Juan J Lozada-Castro

David Arturo-Perdomo

Angie Pardo-Rueda



Biogenic amines (BAs) are low molecular weight nitrogenous compounds, formed by the breakdown of proteins in highly perishable food products such as fish. BAs can affect human health and are associated with cases of food poisoning. The formation of Bas such as histamine, putrescine, and tyramine were determined, via Process Analytical Chemistry (PAC), in three species of freshwater fish available in markets of city of Pasto in southern Colombia: rainbow trout, tilapia, and cachama. We evaluated the formation of BAs during the fish conservation processes and considered a multifactorial design with two levels. The factors studied were: fish species, slaughter type, storage temperature, and time to purchase. Out of the three fish species studies, tilapia samples revealed the highest average content of putrescine and histamine, with values of 5.4 µg/g and 10.04 µg/g, respectively. Tyramine was not detected in any of the experiments performed. The observed values of BAs in the samples analyzed were below locally tolerated maximal values and the European standard (200 µg/g). However, their presence reveals that factors such as sample storage temperature and time to consumption triggered their formation.


Biogenic amines, process analytical chemistry, freshwater fish, experimental design

Al-Bulushi I, Poole S, Deeth HC, Dykes GA. Biogenic amines in fish: roles in intoxication, spoilage and nitrosamine formation: a review. Critical Review of Food Science and Nutrition, 49: 369-377, 2009.
doi: 10.1080/10408390802067514

Argotty-Salazar AK, Lozada-Castro JJ. Central Composite Design to Optimizate the Derivatization Procedure for Analysis of Biogenic Amines by HPLC-UV. Journal of the Brazilian Chemical Society, 28(4): 575-581, 2017.
doi: 10.5935/0103-5053.20160200

Ben-Gigirey B, Vieites Baptista de Sousa JM, Villa TG, BarrosVelazquez J. Changes in biogenic amines and microbiological analysis in albacore (Thunnus alalunga) muscle during frozen storage. Journal of Food Protection, 61(5):608-15, 1998.
doi: 10.4315/0362-028x-61.5.608

Biji KB, Ravishankar CN, Venkateswarlu R, Mohan CO, Gopal TK. Biogenic amines in seafood: a review. Journal of Food Science and Technology, 53(5):2210-2218, 2016.
doi: 10.1007/s13197-016-2224-x

Bilgin B, Gençcelep H. Determination of Biogenic Amines in Fish Products. Food Science and Biotechnology, 24(5): 1907-1913, 2015.
doi 10.1007/s10068-015-0251-4

Bito M, Yamanada K, Mikumo Y, Amano K. Studies on rigor mortis of fish, 1: Difference in the mode of rigor mortis among some varieties of fish by modified Cutting‘s methods. Bulletin Tokai Regional Fisheries Research Laboratory, 109, 89-96, 1983.

Bover-Cid S, Torriani S, Gatto V, Tofalo R, Suzzi G, Belletti N. Relationships between microbial population dynamics and putrescine and cadaverine accumulation during dry fermented sausage ripening. Journal of Applied Microbiology, 106: 1397-1407, 2009.
doi: 10.1111/j.1365-2672.2008.04108.x

Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Official Journal of the European Union. L338 :(48), 2005.

Gardini F, Özogul Y, Suzzi G, Tabanelli G, Özogul F. Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Frontiers in Microbiology, 7:1218, 2016.
doi: 10.3389/fmicb.2016.01218

Gobernación de Nariño. Secretaria de agricultura y medio ambiente de Nariño. Organizaciones y productores del sector piscícola. Programa adelante Nariño,1, Pasto-Colombia. 2019.

Francisco KCA, Brandão PF, Ramos RM, Gonçalves LM, Cardoso AA, Rodrigues JA. Salting-out assisted liquid-liquid extraction with dansyl chloride for the determination of biogenic amines in food. International Journal of Food Science and Technology, 55: 248-258, 2020.
doi: 10.1111/ijfs.14300

Hernández I. Plan de manejo sanitario con distribuidores de pescado y mariscos en el municipio de San Juan de Pasto. San Juan de Pasto-Colombia, 12, 2001. 249.

Huss H. Quality and quality changes in fresh fish, in FAO Fisheries Technical Paper, 348. Ed by HH Huss. Technological Laboratory Ministry of Agriculture and Fisheries. Denmark, 195, 1995.

Instituto Nacional de Salud de Colombia. Enfermedades Transmitidas por Alimentos. Primer Semestre. Informe del Evento. Bogotá-Colombia. 2019.

López-Sabater EI, Rodríguez-Jerez JJ, Hernández- Herrero MM. Sensory quality and histamine formation during controlled decompositionof Tuna (Thunnus thynnus). Journal of Food Protection, 59: 167-174, 1996.
doi: 10.4315/0362-028X-59.2.167

Mieltz JL, Karmas E. Polyamine and histamine content of rock-fish, salmon, lobster and shrimp as an indicator of decomposition. Journal Of Association of Official Analytical Chemists, 61(1):139-145. 1977.
doi: 10.1093/jaoac/61.1.139

Ministerio de Salud y Protección Social de Colombia. Subdirección de Vigilancia y Control en Salud Pública. Protocolo de vigilancia y control de Enfermedades Transmitidas por Alimentos. INTR02.002.4040-005, 5, 2010.

Ministerio de Sanidad y Consumo de España. Real Decreto 1437/1992. Normas sanitarias aplicables a la producción y comercialización de los productos pesqueros y de la acuicultura. Anexo Capítulo V: Controles sanitarios e inspección de las condiciones de producción. BOE (11): 808-820, 1992.

Plan Nacional de Desarrollo de la Acuicultura Sostenible en Colombia PlaNDAS. FAO-AUNAP. Bogota Colombia.2014.

Pons S.S. Estudio de Alternativas Para la Evaluación de la Frescura y Calidad del Boqueron. Tesis Doctoral, Universidad de Barcelona, Facultad de Farmacia. Departamento de Nutrición y Bromatología, Barcelona-España, 2005. ?sequence=1&isAllowed=y

Rodríguez JJ, López MM, Hernández MT. Histamine, putrescine and cadaverine formation in Spanish semipreserved anchovies as affected by time/temperature. Journal of Food Science, (59): 993-997, 1994.
doi: 10.1111/j.1365-2621.1994.tb08175.x

Sentellas S, Núñez Ó, Saurina J. Recent Advances in the Determination of Biogenic Amines in Food Samples by (U) HPLC. Journal of Agricultural and Food Chemistry, 64(11):7667-7678, 2016.
doi: 10.1021/acs.jafc.6b02789

Veciana Nogues M, Hernandez Joverr T, Marine Font A. Vidal Carou C, Liquid chromatographic method for determination of biogenic amines in fish and fish products. Journal Of Association of Official Analytical Chemists. International, 78 (4): 1045-1050, 1995.

Veciana-Nogues MT, Marine FA, Vidal MC. Biogenic amines as hygienic quality indicators of Tuna. Relationships with microbial counts, ATP-related compounds, volatile amines and organoleptic changes. Journal of Agricultural and Food Chemistry, 45:2036-2041, 1997.
doi: 10.1021/jf960911l

Workman-Jr. J, Koch M, Barry L, Chrisman R. Process Analytical Chemistry. Analytical Chemistry, 81, 4623-4643, 2009.
doi: 10.1021/ac900778y

Yamanaka H, Shiomi K, Kikuchi T. Cadaverine as a potential index for decomposition of salmonoid fishes. Journal of Food Hygiene and Safety Science, 30:170-174, 1989.
doi: 10.3358/shokueishi.30.170

Zarei M, Najafzadeh H, Enayati A, Pashmforoush M. Biogenic Amines Content of Canned Tuna Fish Marketed in Iran. American-Eurasian. Journal of Toxicological Sciences, 3 (3): 190-193, 2011.
How to Cite
Lozada-Castro, J. J., Arturo-Perdomo, D., & Pardo-Rueda, A. (2020). Biogenic amines in rainbow trout, tilapia, and cachama fish, available for consumption in Nariño, southern Colombia. Universitas Scientiarum, 25(2), 321–340.
Food Chemistry