Published May 25, 2021


Google Scholar
Search GoogleScholar

Andrea Blanco-Vargas

Lina M Rodríguez-Gacha

Natalia Sánchez-Castro

Laura Herrera-Carlosama

Raúl A. Poutou-Piñales

Lucía A. Díaz-Ariza

Viviana Gutiérrez-Romero

Claudia M Rivera-Hoyos

Leydi D. Ardila-Leal

Aura M. Pedroza-Rodriguez



Phosphorus (P) is an essential nutrient for plant’s development, and its deficiency restricts crop yield. To meet P requirements in agricultural settings, a low-cost culture medium (MT11B) was designed in which a bioinoculant was produced consisting of three bacterial isolates capable of solubilizing P from phosphoric rock (PR). Pseudomonas sp., Serratia sp., and Kosakonia sp. exhibited P solubilization in SMRS1 agar modified with PR (5.0 g L-1), as source of inorganic P. Sowings by isolation were made of the three bacteria on DNAse- and Blood-agar to rule out pathogenicity. At the interaction tests, no inhibition halos were observed; demonstrating there was no antagonism among them, thus they were used to constitute a consortium. Growth curve (12 h) in MT11B demonstrated consortium grew in presence of PR, brewer’s yeast hydrolysate, and glucose at concentrations (2.5 g L-1) fourfold lower than those in SMRS1 (10.0 g L-1); obtaining phosphate solubilizing bacteria of (10.60 ± 0.08/ log10 CFUmL-1 and, at 6 h of culture, acid and alkaline phosphatase enzyme volumetric activities of 2.3 ± 0.8 and (3.80 ± 0.13) UP, respectively. The consortium, releasing phosphorus at a rate of (45.80 ± 5.17) mg L-1 at 6 h of production, was evaluated as bioinoculant in onion plots for five months. Plants receiving a treatment that included 500 mL (10 x 107 CFU mL-1) of bioinoculant plus 100 kg ha-1 of an organic mineral fertilizer exhibited the highest determined response variables (170.1 ± 22.2) mm bulb height, (49.4 ± 6.5) mm bulb diameter, (9.0 ± 1.8) g bulb dry weight, and 15.21 mg bulb-1 total phosphorus (p < 0.05).


Bioinoculant, phosphate rock, Pseudomonas sp., Serratia sp., Kosakonia sp., organic acids, phosphatases, Allium cepa L.

Aarab S, Ollero J, Megías M, Laglaoui A, Bakkali M & Arakrak A. Some characteristics of phosphate solubilizing rhizobacteria as an ecological strategy for sustainable agriculture, Materials Today: Proceedings, 13 (3): 1224-1228, 2019.

Acevedo E, Galindo-Castañeda T, Prada F, Navia M & Romero HM. Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia, Applied Soil Ecology, 80: 26-33, 2014.

Ahemad M & Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective, Journal of King Saud University - Science, 26 (1): 1-20, 2014.

Ahmad E, Khan MS & Zaidi A. ACC deaminase producing Pseudomonas putida strain PSE3 and Rhizobium leguminosarum strain RP2 in synergism improves growth, nodulation and yield of pea grown in alluvial soils, Symbiosis, 61: 93-104, 2013.

Ahmad E, Zaidi A & Khan MS. Response of PSM Inoculation to Certain Legumes and Cereal Crops, in Khan, Zaidi &Musarrat, (Eds). Phosphate Solubilizing Microorganisms. Springer, Cham, 2014, p. 175-205.

Aliasgharzad N, Bolandnazar SA, Neyshabouri MR & Chaparzadeh N. Impact of soil sterilization and irrigation intervals on P and K acquisition by mycorrhizal onion (Allium cepa), Biologia, 64 (3): 512-515, 2009.

Alori ET, Glick BR & Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture, Frontiers in Microbiology, 8: 971, 2017.

Álvarez-Hernández JC, Venegas-Flores S, Soto-Ayala C, Chávez-Vargas A & Zavala-Sánchez L. Uso de fertilizantes químicos y orgánicos en cebolla (Allium cepa L.) en Apatzingán, Michoacán, México, Avances en Investigación Agropecuaria, 15 (2): 29-43, 2011.

Angulo-Cortés JP, García-Díaz A, Pedroza AM, Martínez-Salgado MM & Gutiérrez-Romero V. Diseño de un medio para la producción de un co-cultivo de bacterias fosfato solubilizadoras con actividad fosfatasa, Universitas Scientiarum, 17 (1): 43-52, 2012.

Anzuay MS, Ruiz Ciancio MG, Ludueña LM, Angelini JG, Barros G, Pastor N & Taurian T. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides, Microbiological Research, 199: 98-109, 2017.

Bakhshandeh E, Rahimian H, Pirdashti H & Nematzadeh GA. Evaluation of phosphatesolubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in Northern Iran Journal of Applied Microbiology, 119 (5): 1371-1382, 2015.

Bales PM, Renke EM, May SL, Shen Y & Nelson DC. Purification and Characterization of Biofilm-Associated EPS Exopolysaccharides from ESKAPE Organisms and Other Pathogens, Plos One, 8 (6): e67950, 2013.

Becerra JM, Quintero D, Martínez M & Matiz A. Caracterización de microorganismos solubilizadores de fosfato aislados de suelos destinados al cultivo de uchuva (Physalis peruviana L.) Revista Colombiana de Ciencias Hortícolas, 5 (2): 186-194, 2011.

Behera B, Singdevsachan S, Mishra R, Dutta S & Thatoi H. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove-A review, Biocatalysis and Agricultural Biotechnology, 3 (2): 97-110, 2014.

Behera BC, Yadav H, Singh SK, Mishra RR, Sethi BK, Dutta SK & Thatoi HN. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India, Journal of Genetic Engineering and Biotechnology, 15: 169-178, 2017.

Beheshti M, Etesami H & Alikhani HA. Interaction study of biochar with phosphate-solubilizing bacterium on phosphorus availability in calcareous soil, Archives of Agronomy and Soil Science, 60 (11): 1572-1581, 2017.

Berger B, Patz S, Ruppel S, Dietel K, Faetke S, Junge H & Becker M. Successful formulation and application of plant growth-promoting Kosakonia radicincitans in maize cultivation, BioMed Research International, 2018: Article ID 6439481, 2018.

Bheri M & Pandey GK. Protein phosphatases meet reactive oxygen species in plant signaling networks, Environmental and Experimental Botany, 161: 26-40, 2019.

Blanco C & Lagos J, Manual de producción de cebolla, ed., Instituto de Investigaciones Agropecuarias (INIA), Santiago de Chile, Chile 2017, 104 pp. Blanco-Vargas A, Rodríguez-Gacha LM, Sánchez-Castro N, Garzón-Jaramillo R, Pedroza- Camacho LD, Poutou-Piñales RA, Rivera-Hoyos CM, Díaz-Ariza LA & Pedroza-Rodríguez AM. Phosphate-solubilizing Pseudomonas sp. and Serratia sp., co-culture for Allium cepa L. growth promotion, Heliyon 6 (10): e05218, 2020.

Boyhan GE, Torrance RL & Hill CR. Effects of nitrogen, phosphorus, and potassium rates and fertilizer sources on yield and leaf nutrient status of short-day onions, HortSience, 42 (3): 653-660, 2007.

Brady C, Cleenwerck I, Venter S, Coutinho T & De Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): Proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter, Systematic and Applied Microbiology, 36 (5): 309-319, 2013.

Bushra T, Anwar K, Muhammad T, Memoona R, Muhammad Saleem IK, Naila S & Khadija A. Bottlenecks in commercialisation and future prospects of PGPR, Applied Soil Ecology, 121: 102-117, 2017.

Chen M, Cheng J, Zhang J, Chen Y, Zeng H, Xue L, Lei T, Pang R,Wu S,Wu H, Zhang S,Wei X, Zhang Y, Ding Y & Wu Q. Isolation, Potential Virulence, and Population Diversity of Listeria monocytogenes From Meat and Meat Products in China, Frontiers in Microbiology, 10: Article 946, 2019.

Cherchali A, Boukhelata N, Kaci Y, Abrous-Belbachir O & Djebbar R. Isolation and identification of a phosphate-solubilizing Paenibacillus polymyxa strain GOL 0202 from durum wheat (Triticum durum Desf.) rhizosphere and its effect on some seedlings morphophysiological parameters, Biocatalysis and Agricultural Biotechnology, 19: 101087, 2019.

Cisneros Rojas CA, Sánchez de P. M & Menjivar F. JC. Identificación de bacterias solubilizadoras de fosfatos en un andisol de la región cafetera colombiana, Revista Colombiana de Biotecnología, XIX (1): 21-28, 2017.

Collins CH & Lyne PM, Collins and Lyne’s Microbiological Methods, 8 Ed. ed., Taylor & Francis Ltd, London, United Kingdom 2004, 480p.

Cruz-Barrera M, Jakobs-Schoenwandt D, Gómez MI, Becker M, Patel AV & Ruppel S. Salt stress and hydroxyectoine enhance phosphate solubilisation and plant colonisation capacity of Kosakonia radicincitans, Journal of Advanced Research, 19: 91-97, 2019.

Damse D, Bhalekar MN & Pawar PK. Effect of integrated nutrient management on growth and yield of garlic, The Bioscan, 9 (4): 1557-1560, 2014.

De Oliveira Mendes G, Galvez A, Vassileva M & Vassilev N. Fermentation liquid containing microbially solubilized P significantly improved plant growth and P uptake in both soil and soilless experiments, Applied Soil Ecology, 117-118: 208-211, 2017.

De Oliveira Mendes G, Lopez Zafra D, Vassilev NB, Ribeiro Silva I, Ribeiro JI & Dutra Costa M. Biochar Enhances Aspergillus niger Rock Phosphate Solubilization by Increasing Organic Acid Production and Alleviating Fluoride Toxicity, Applied and Envinronmental Microbiology, 80 (10): 3081-3085, 2014.

Doran PM, Bioprocess Engineering Principles, ed., Elsevier Ltd. 2013 Gao H, Lu C,Wanga H,Wang L,YangY, Jiang T, Li S,XuD&Wu L. Production exopolysaccharide from Kosakonia cowanii LT-1 through solid-state fermentation and its application as a plant growth promoter, International Journal of Biological Macromolecules, 150: 955-964, 2020.

Grageda-Cabrera OA, Díaz-Franco A, Peña-Cabriales JJ&Vera-Nuñez JA. Impact of biofertilizers in agriculture, Revista Mexicana de Ciencias Agrícolas, 3 (6): 1261-1274, 2012.

Hach Company/Hach Lange GmbH (2007) HACH 8507: Nitrogen nitrite--low range, diazotization method for water and wastewater. pp: 4.

Hernández-Sáenz D, Puentes-Morales CS, Mateus-Maldonado JF, Pedroza-Camacho LD, Ramírez- Rodríguez J, Rivera-Hoyos CM & Pedroza-Rodríguez AM. Evaluación del consorcio entre Pleurotus ostreatus, Trametes versicolor y bacterias aeróbicas para remoción de colorantes sintéticos, Revista Colombiana de Biotecnología, 12: 45-59, 2020.

Huguet A, Coffinet S, Roussel A, Gayraud F, Anquetil C, Bergonzini L, Bonanomi G,Williamson D, Majule A & Derenne S. Evaluation of 3-hydroxy fatty acids as a pH and temperature proxy in soils from temperate and tropical altitudinal gradients, Organic Geochemistry, 129: 1-13, 2019.

ICONTEC (2011a) Bioinsumos para uso agrícola. Inoculantes biológicos. NTC 5842. pp: 13.

ICONTEC (2011b) Norma Técnica Colombiana 5167 (segunda actualización). Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas de suelo. pp: 10.

Ikeda H, Kinoshita T, Yamamoto T & Yamasaki A. Sowing time and temperature influence bulb development in spring-sown onion (Allium cepa L.), Scientia Horticulturae, 244: 242-248, 2019.

Jayathilake PKS, Reddy IP, Srihari D & Reddy KR. Productivity and soil fertility status as influenced by integrated use of N-fixing biofertilizers, organic matures and inorganic fertilizers in onion The Journal of Agricultural Sciences, 2 (1): 46-58, 2006.

Jha A, Saxena J&Sharma V. Investigation on phosphate solubilization potential of agricultural soil bacteria as affected by different phosphorus sources, temperature, salt, and pH, Communications in Soil Science and Plant Analysis 44 (16): 2443-2458, 2013.

Joe MM, Deivaraj S, Benson A, Henry AJ & Narendrakumar G. Soil extract calcium phosphate media for screening of phosphate-solubilizing bacteria, Agriculture and Natural Resources, 52 (3): 305-308, 2018.

Kämpfer P, McInroy JA, Doijad S, Chakraborty T & Glaeser SP. Kosakonia pseudosacchari sp. nov., an endophyte of Zea mays, Systematic and Applied Microbiology, 39 (1): 1-7, 2016.

Khan MS, Zaidi A & Wani PA. Role of phosphate-solubilizing microorganisms in sustainable agriculture-A review, Agronomy for Sustainable Development, 27 (1): 29-43, 2007.

Koch S, Majewski E, Schmeisky H & Schmidt FRJ. Critical evaluation of phosphate solubilizing Pseudomonads isolated from a partially recultivated potash tailings pile, Current Microbiology, 65 (2): 202-206, 2012.

Krishnaraj PU & Dahale S. Mineral phosphate solubilization: Concepts and prospects in sustainable agriculture, Proccedings Indian National Science Academy, 80 (2): 389-405, 2014.

Liu X, Long D, You H, Yang D, Zhou S, Zhang S, Li M, He M, Xiong M & Wang X. Phosphatidylcholine affects the secretion of the alkaline phosphatasePhoA in Pseudomonas strains, Microbiological Research, 192: 21-29, 2016.

Lobo CB, Juárez Tomása MS, Viruel E, Ferrero MA & Lucca ME. Development of lowcost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies, Microbiological Research, 219: 12-25, 2019.

Ludueña M, Anzuay M, Magallanes C, Tonelli ML, Ibañez F, Angelini J & Taurian T. Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119, Research in Microbiology, 168 (8): 710-721, 2017.

Maghraoui T, Bechtaoui N, Galiana A, Wahbi S, Duponnois R, Hafidi M, Daoui A, Zain eAF, De Lajudie P & Oufdou K. Effect of inoculation by Moroccan rock phosphate solubilizing rhizobia, versus phosphorus fertilization, on the growth and the phosphorus uptake by Vicia faba, Pakistan Journal of Agricultural Sciences, 53 (4): 817-826, 2016.

Mardad I, Serrano A & Soukri A. Effect of carbon, nitrogen sources and abiotic stress on phosphate solubilization by bacterial strains isolated from a moroccan rock phosphate deposit, Journal of Advanced Chemical Engineering, 4 (1): 1000102, 2014.

Mardad I, Serrano A & Soukri AA. Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit, African Journal of Microbiology Research, 7 (8): 626-635, 2013.

Marra LM, de Oliveira-Longatti SM, Soares CRFS, de Lima JM, Olivares FL & Moreira FMS. Initial pH of medium affects organic acids production but do not affect phosphate solubilization, Brazilian Journal of Microbiology, 46 (2): 367-375, 2015.

Miller G. Use of dinitrosalicylic acid reagent for determination of reducing sugar, Analytical Chemistry, 31 (3): 426-428, 1959.

Mohamed AA, Eweda WEE, Heggo AM & Hassan EA. Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under green house conditions, Annals of Agricultural Science, 59 (1): 109-118, 2014.

Moreno-Bayona DA, Gómez-Méndez LD, Blanco-Vargas A, Castillo-Toro A, Herrera-Carlosama L, Poutou-Piñales RA, Salcedo-Reyes JC, Díaz-Ariza LA, Castillo-Carvajal LC, Rojas-Higuera NS & Pedroza-Rodríguez AM. Simultaneous bioconversion of lignocellulosic residues and oxodegradable polyethylene by Pleurotus ostreatus for biochar production, enriched with phosphate solubilizing bacteria for agricultural use, Plos One, 14 (5): e0217100, 2019.

Mukhtar S, Shahid I, Mehnaz S & Malik KA. Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.), Microbiological Research, 205: 107-117, 2017.

Munda S, Shivakumara BG, Rana DS, Gangaiah B, Manjaiah KM, Dass A, Layek J & Lakshman K. Inorganic phosphorus along with biofertilizers improves profitability and sustainability in soybean (Glycine max)–potato (Solanum tuberosum) cropping system, Journal of the Saudi Society of Agricultural Sciences, 17 (2): 107-113, 2018.

Murphy J & Riley JP. A single-solution method for the determination of soluble phosphate in sea water, Journal of the Marine Biological Association of the United Kingdom, 37 (1): 9-14, 1958.

Murphy J & Riley JP. A modified singles solution method for the determination of phosphate in natural waters, Analytica Chimica Acta, 27: 31-36, 1962.

Okalebo JR, Gathua KW & Woomer PL, Laboratory Methods of Soil and Plant Analysis: A Working Manual, 2 Ed. ed., TSBF-CIAT and SACRED, Kenya 2002,

Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ & Dowling DN. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates, Frontiers in Microbiology, 6: 745, 2015.

Parastesh F, Alikhani HA & Etesami H. Vermicompost enriched with phosphate–solubilizing bacteria provides plant with enough phosphorus in a sequential cropping under calcareous soil conditions, Journal of Cleaner Production, 221: 27-37, 2019.

Paredes-Mendoza M & Espinosa-Victoria D. Ácidos orgánicos producidos por rizobacterias que solubilizan fosfato: Una revisión crítica, Tierra Latinoamericana, 28 (1): 61-70, 2010.

Patel K, Patel S, Parekh V & Jha S. Isolation and characterization of salt tolerant phosphate solubilizing
Serratia marcescens isolated from coastal area, Journal of Pure Applied Microbiology, 10 (3): 2401-2408, 2016.
Patiño Torres C & Sánchez De Prager M. Aislamiento e identificación de bacterias solubilizadoras de fosfatos, habitantes de la rizósfera de chontaduro (b. gassipaes kunth) Biotecnología en el Sector Agropecuario y Agroindustrial, 10 (2): 177-187, 2012.

Paul NB & Sundara Rao WVB. Phosphate-dissolving bacteria in the rhizosphere of some cultivated legumes, Plant Soil, 35 (1-3): 127-132, 1971.

Petropoulos SA, Fernandes Â, Barros L, Ferreira ICFR & Ntatsi G. Morphological, nutritional and chemical description of “Vatikiotiko”, an onion local landrace from Greece, Food Chemistry, 182: 156-163, 2015.

Pramanik K, Kundu S, Banerjee S, Ghosh PK & Mait TK. Computational-based structural, functional and phylogenetic analysis of Enterobacter phytases, 3 Biotech, 8: 262, 2018a.

Pramanik K, Pal P, Soren T, Mitra S, Ghosh PK, Sarkar A & Maiti TK. In silico structural, functional and phylogenetic analysis of Klebsiella phytases, Journal of Plant Biochemistry and Biotechnology, 27: 362-372, 2018b.

Preobrazhenskaya YV, Voskoboev AI & Burd VN. Phosphatase activity of non-heme chloroperoxidase from the bacterium Serratia marcescens, FEBS Letters, 536 (1-3): 41-44, 2003.

Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E&Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents, Future Medicinal Chemistry, 7 (4): 493-512,

Rasul M, Yasmin S, Zubair M, Mahreen N, Yousaf S, Arif M, Sajid ZI & Mirza MS. Phosphate solubilizers as antagonists for bacterial leaf blight with improved rice growth in phosphorus deficit soil, Biological Control, 136: 103997, 2019.

Rodríguez Y, Cárdenas A & Camelo C (2009) Protocolo para la determinacion de la actividad fosfatasa acida y alcalina en suelos - Laboratorio de Microbiologia Agrícola - Universidad Nacional de Colombia. pp: 5

Ruiz CF, Henao Gómez D, Lozano Borda M, Colorado LA, Mora Holguín H, Velandia Sánchez J, Navarro Morato O, Montes JO, Ariza Barbosa N, Cancino Salas R & Salazar Acosta M (2012)

Plan Estratégico Departamental de Ciencia, Tecnología e Innovación PEDCTI, Boyacá 2022. pp: 306.

Savardi M, Ferrari A & Signoroni A. Automatic hemolysis identification on aligned dual-lighting images of cultured blood agar plates, Computer Methods and Programs in Biomedicine, 156: 13-14, 2018.

Serna Posso EJ, Sánchez de Prager M & Cisneros Rojas CA. Organic acids production by rhizosphere microorganisms isolated from a typic melanudands and its effects on the inorganic phosphates solubilization, Acta Agronómica 66 (2): 241-247, 2017.

Sharma SB, Sayyed RZ, Trivedi MH & Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils, SpringerPlus, 2: 587, 2013.

Solankia M, Kundub BS & Nehrac K. Molecular diversity of phosphate solubilizing bacteria isolated from the rhizosphere of chickpea, mustard and wheat, Annals of Agrarian Science, 16: 458-463, 2018.

StellaM&Halimi MS. Gluconic acid production by bacteria to liberate phosphorus from insoluble phosphate complexes, Journal of Tropical Agriculture and Food Science, 43 (1): 41-53, 2015.

Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM & Mirza MS. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat, Plos One, 13 (9): e0204408, 2018.

Swetha S & Padmavathi T. Study of acid phosphatase in solubilization of inorganic phosphates by Piriformospora indica, Polish Journal of Microbiology, 65 (4): 407-412, 2016.

Tabataba MA & Bremner JM. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity, Soil Biology and Biochemistry, 1 (4): 301-307, 1969.

Tahir M, Khalid U, Ijaz M, Shah GM, Naeem MA, Shahid M, Mahmood K, Ahmad N & Kareem F. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate, Brazilian Journal of Microbiology, 495: 15-24, 2018.

Tekeste N, Dechassa N, Woldetsadik K, Dessalegne L & Takele A. Influence of nitrogen and phosphorus application on bulb yield and yield components of onion (Allium cepa L.), The Open Agriculture Journal, 12: 194-206, 2018.

Vaccari DA. Phosphorus: A Loomng, Scientific American: 54-59, 2009.

Valetti L, Iriarte L & Fabra A. Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria, Applied Soil Ecology, 132: 1-10, 2018.

Vassilev N, Mendes G, Costa M & Vassileva M. Biotechnological tools for enhancing microbial solubilization of insoluble inorganic phosphates, Geomicrobiology Journal, 31 (9): 751-763, 2014.

Wei Y, Zhao Y, Shi M, Cao Z, Lu Q, Yang T, Fan Y & Wei Z. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation, Bioresource Technology, 247: 190-199, 2018.

Yadav H, Fatima R, Sharma A & Mathur S. Enhancement of applicability of rock phosphate in alkaline soils by organic compost, Applied Soil Ecology, 113: 80-85, 2017.

Yadav H, Gothwal RK, Mathur S & Ghosh P. Bioactivation of Jhamarkotra rock phosphate by a thermotolerant phosphate-solubilizing bacterium Bacillus sp. BISR-HY63 isolated from phosphate mines, Archives of Agronomy and Soil Science 61 (81125-1135), 2015.

Yoldas F, Ceylan S, Mordogan N & Esetlili BC. Effect of organic and inorganic fertilizers on yield and mineral content of onion (Allium cepa L.)„ African Journal of Biotechnology, 10 (55): 11488-11492, 2011.

Zambrano-Moreno DC, Bonilla-Buitrago RR, Avellaneda L & Zambrano G. Análisis prospectivo de los bioinsumos agrícolas en Colombia: una consulta a expertos, Revista Colombiana de Biotecnología 17 (2): 103-113, 2015a.

Zambrano-Moreno DC, Ramón-Rodríguez LF, Van Strahlen-Pérez M & Bonilla-Buitrago RR. Industria de bioinsumos de uso agrícola en Colombia, Revista U.D.C.A Actualidad & Divulgación Científica, 18 (1): 59-67, 2015b.

Zendejas-Manzo GS, Avalos-Flores H & Soto-Padilla MY. Microbiología general de Staphylococcus aureus: Generalidades, patogenicidad y métodos de identificación, Revista Biomédica, 25: 129-143, 2014.

Zhao Y, Hu M, Gao Z, Chen X & Huang D. Biological mechanism of a novel hydro-electro hybrid priming recovers potential vigor of onion seeds, Environmental and Experimental Botany, 150: 260-271, 2018.

Zhu J, Li M & Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review, Science of the Total Environment, 612: 522-537, 2018.
How to Cite
Blanco-Vargas, A., Rodríguez-Gacha, L. M., Sánchez-Castro, N., Herrera-Carlosama, L., Poutou-Piñales, R. A., Díaz-Ariza, L. A., Gutiérrez-Romero, V., Rivera-Hoyos, C. M., Ardila-Leal, L. D., & Pedroza-Rodriguez, A. M. (2021). Bioinoculant production composed by Pseudomonas sp., Serratia sp., and Kosakonia sp., preliminary effect on Allium cepa L., growth at plot scale. Universitas Scientiarum, 26(1), 79–118.
Applied Microbiology

Most read articles by the same author(s)