Selective extraction and modification of cellulose from sugar cane bagasse (Saccharum officinarum)
PDF

Keywords

sugarcane
flocculant
polyacrylamide
cellulose

How to Cite

Selective extraction and modification of cellulose from sugar cane bagasse (Saccharum officinarum). (2022). Universitas Scientiarum, 27(3), 254–272. https://doi.org/10.11144/Javeriana.SC273.seam
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

This paper’s aim was the synthesis of a flocculant useful in the production of panela as an alternative to replace polyacrylamide and improve food safety in Boyacá, a Colombian district. The cellulose was extracted by using a treatment with potassium hydroxide and followed by acid hydrolysis. From the extracted cellulose, cationic dialdehyde cellulose (CDAC) was synthesized and both cellulose and CDAC were characterized using infrared spectroscopy, FTIR, thermogravimetric analysis (TGA), differential thermal analysis (DSC) Scanning Electron Microscopy (SEM) and RAMAN. The cellulose extracted by hydrolysis from sugarcane bagasse with bleaching, gave yield of 50 % and crystallinity index of 77 %. Its modification to aldehyde is 95 % reliable at a temperature of 65 oC and 2 h; with higher temperature and time the performance is affected. The dialdehyde process allows a modification to be carried out and to be more easily attacked at carbons 2 and 3, leaving cationized cellulose for later use as a flocculant in the panela production process as a traditional solution of flocculants and polyacrylamide. Extraction, modification, and tests for the clarification of the panela juice were carried out in triplicate.

PDF

Cadavid GO. Buenas prácticas agrícolas –BPA– y buenas prácticas de manufactura –BPM– en la producción de caña y panela. 2007.

Fao L. Mejorando la producción de panela en Colombia. Revista de Agroecología. 1: 1–6, 2017

García EY, Salgado GS, Bolio LG, Córdova SS Lagunes LC, Falcon CR, Veleva L. Métodos para extraer celulosa de la paja de caña de azúcar (Saccharum spp.). Agro productividad. 10(11): 54–59, 2017.

López-Martínez A, et al. Obtención de celulosa a partir de bagazo de caña de azúcar (Saccharum Officinarum L.): Aislamiento y caracterización. Agro productividad. 9(7): 1–12, 2016.

Zumalacárregui, et al. Potencialidades del bagazo para la obtención de etanol frente a la generación de electricidad. Revista ingeniería investigacion tecnologia. 16(3): 407–418, 2015.

Kaushal I, Saharan P, Kumar V, Sharma A, Umar A. Superb sono-adsorption and energy storage potential of multifunctional Ag-Biochar composite. Journal of Alloys and Compounds. 785: 240–249, 2019.

doi: 10.1016/j.jallcom.2019.01.064

Wang S, Lu A, and Zhang L. Recent advances in regenerated cellulose materials. Progress in Polymer Science. 53: 169–206, 2016.

doi: 10.1016/j.progpolymsci.2015.07.003

Poletto M, Pistor V, and Zattera AJ. Structural Characteristics and Thermal Properties of Native Cellulose. Cellulose - Fundamental Aspects. 2013.

doi: 10.5772/50452

Khatri Z, Mayakrishnan G, Hirata Y, Wei K, Kim I, Cationic-cellulose nanofibers: Preparation and dyeability with anionic reactive dyes for apparel application. Carbohydrate Polymers. 91(1): 434–443, 2013.

doi: 10.1016/j.carbpol.2012.08.046

Sirvio J, Hyvakko U, Liimatainen H, Niinimaki J, Hormi O. Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydrate Polymers. 83(3): 1293–1297, 2011.

doi: 10.1016/j.carbpol.2010.09.036

Tejado A, Alam MN, Antal M, Yang H, van de Ven TGM. Energy requirements for the disintegration of cellulose fibers into cellulose nano fibers. Cellulose. 19(3): 831–842, 2012.

Sirviö J, Honka A, Liimatainen H, Niinimäki J, Hormi O. Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent. Elsevier. 86: 266–270, 2011.

doi: 10.1016/j.carbpol.2011.04.046

Lengowski EC, Ines G, de Muniz B. Avaliação de métodos de obtenção de celulose com diferentes graus de cristalinida de Cellulose acquirement evaluation methods with different degrees of crystallinity. Scientia Forestalis. 185–194, 2013.

Tibolla H, Pelissari FM, Menegalli FC. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT - Food Science and Technology. 59(2): 1311–1318, 2014.

doi: 10.1016/j.lwt.2014.04.011

Matsuzawa Y, Ayabe M, Nishino J, Kubota N, Motegi M. Evaluation of char fuel ratio in municipal pyrolysis waste. In Fuel. 83(11–12): 1675–1687, 2004.

doi: 10.1016/j.fuel.2004.02.006

Ciolacu D, Ciolacu F, Popa VI. Amorphous cellulose – structure and characterization. Cellulose chemistry and technology. 45: 13–21, 2011.

Morán VP, Vazquez J. Extracción de celulosa y obtención de nano celulosa a partir de fibra sisal – caracterización. SAM asociación Argentina de materiales. 1: 16–17, 2008.

Matsuzawa Y, Ayabe M, Nishino J, Kubota N, Motegi M. Evaluation of char fuel ratio in municipal pyrolysis waste. Fuel. 83(11–12): 1675–1687, 2004

doi: 10.1016/j.fuel.2004.02.006

Moreno L, Medina O, Rojas AL. Mucilage and cellulosic derivatives as clarifiers for the improvement of the non-centrifugal sugar production process. Food Chemistry. 367, 2021.

doi: 10.1016/j.foodchem.2021.130657

Prieto F, Jiménez E, Acevedo OA, Rodríguez R, Canales R A, Prieto J. Obtaining and Optimization of Cellulose Pulp from Leaves of Agave tequilana Weber Var. Blue. Preparation of Hand made Craft Paper. Waste and Biomass Valorization. 0(0): 1–17, 2018.

doi: 10.1007/s12649-018-0262-5

Du L, Wang J, Zhang Y, Qi C, Wolcott MP, Yu Z. A co-production of sugars, ligno sulfonates, cellulose, and cellulose nanocrystals from ball-milled woods. Bioresource Technology. 238: 254–262, 2017.

doi: 10.1016/j.biortech.2017.03.097

Sirviö J, Honka A, Liimatainen H, Niinimäki J, Hormi O. Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent. Elsevier. 86: 266–270, 2011.

doi: 10.1016/j.carbpol.2011.04.046

Nechyporchuk O, Belgacem MN, Bras J. Production of cellulose nanofibrils: A review of recent advances. Elsevier. 93: 2–25, 2016.

doi: 10.1016/j.indcrop.2016.02.016ç

Kono H. Cationic flocculants derived from native cellulose: Preparation, biodegradability, and removal of dyes in aqueous solution. Resource Technology. 3(1): 55–63, 2017.

doi: 10.1016/j.reffit.2016.11.015

Zhang Y, Jiao J, Ren Y, Wu X, Zhang Y. Determination of acrylamide in infant cereal-based foods by isotope dilution liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Analytica Chimica Acta. 551(1): 150–158, 2005.

doi: 10.1016/j.aca.2005.07.005

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Universitas Scientiarum