Abstract
Reverse translation has been an enigmatic part in the Crick’s central dogma of molecular biology since 1950s. Described as the possibility of how protein could use itself as the information molecules that capable to be reverted back to the information in the nucleic acid nucleotides (or codon) or to replicate itself as its nucleic acid counterparts, DNA and RNA. Few studies in the past have attempted to theorize and to conduct in vitro experiment in order to test the possibilities of reverse translation as it believed to be existed back in the ancient Earth. The ideas are including the utilization of antigen determinant site and creation of a hammerhead ribozyme. At the end, the concept requires more follow-up studies as there are some constrains, including the stability of the protein peptide bonds, structural non-uniformity of protein R-groups and asymmetrical informational transfer. Now as bioinformatics rises as the growing branch of biology, it could serve as a tool to answer if reverse translation can be possible in the future that further can be useful to understand the protein-nucleic acid information symmetry in the ancient Earth. Moreover, reverse translation has potential applications in evolutionary biology, synthetic protein to nucleotide reversal and to improve the process in bioinformatics (e.g., via machine learning).
Crick F. On Protein Synthesis. Symposia of the Society for Experimental Biology, 12: 139–163, 1958.
Crick F. Central dogma of molecular biology. Nature, 227(5258): 561–563, 1970.
doi: 10.1038/227561a0
Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature, 226(5252): 1209–1211, 1970.
doi: 10.1038/2261209a0
Temin HM, Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature, 226(5252): 1211–1213, 1970.
doi: 10.1038/2261211a0
Baltimore D, Eggers HJ, Franklin RM, Tamm I. Poliovirus-induced RNA polymerase and the effects of virus-specific inhibitors on its production. Proceedings of National Academy of Science USA, 49(6): 843–849, 1963.
doi: 10.1073/pnas.49.6.843
Koonin EV. Does the central dogma still stand? Biology Direct, 7(1): 27, 2012.
doi: 10.1186/1745-6150-7-27
Koonin EV. Why the Central Dogma: on the nature of the great exclusion principle. Biology Direct, 10(1): 52, 2015.
doi: 10.1186/s13062-015-0084-3
Rich A. On the problems of evolution and biochemical information transfer. In: Kasha M., Pullman B. (eds.). Horizons in Biochemistry. Academic Press; New York, NY, USA: 1962. pp. 103–126
Lehman N. The RNA World: 4,000,000,050 years old. Life, 5(4): 1583–1586, 2015.
doi: 10.3390/life5041583
Gilbert W. Origin of life: The RNA world. Nature, 319(6055): 618, 1986.
doi: 10.1038/319618a0
Bernhardt HS. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biology Direct, 7(1): 23, 2012.
doi: 10.1186/1745-6150-7-23
Forterre P. The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie, 87(9-10): 793–803, 2005.
doi: 10.1016/j.biochi.2005.03.015
Nashimoto M. The RNA/protein symmetry hypothesis: experimental support for reverse translation of primitive proteins. Journal of Theoretical Biology, 209(2): 181–187, 2001.
doi: 10.1006/jtbi.2000.2253
Lee DH, Granja JR, Martinez JA, Severin K, Ghadiri MR. A self-replicating peptide. Nature, 382(6591): 525–528, 1996.
doi: 10.1038/382525a0
Beekes M, McBride PA. The spread of prions through the body in naturally acquired transmissible spongiform encephalopathies. The FEBS Journal, 274(3): 588–605, 2007.
doi: 10.1111/j.1742-4658.2007.05631.x
Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry, 75: 333–366, 2006.
doi: 10.1146/annurev.biochem.75.101304.123901
Ridley RM. What Would Thomas Henry Huxley Have Made of Prion Diseases? In: Baker HF (ed.). Molecular Pathology of the Prions; Humana Press Inc., NY, 2001; Vol. 59, pp.1-16.
Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Lindquist SL. Self-perpetuating changes in Sup35 protein conformation as a mechanism of heredity in yeast. Biochemical Society Symposia, 68: 35–43, 2001.
doi: 10.1042/bss0680035
Serio TR, Lindquist SL. [PSI+]: an epigenetic modulator of translation termination efficiency. Annual Review of Cell and Development Biology, 15: 661–703, 1999.
doi: 10.1146/annurev.cellbio.15.1.661
Mekler LB. Mechanism of biological memory. Nature, 215(5100): 481–484, 1967.
doi: 10.1038/215481a0
Cook ND. The case for reverse translation. Journal of Theoretical Biology, 64: 113–135, 1977.
doi: 10.1016/0022-5193(77)90116-3
Tawfik DS, Gruic‐Sovulj I. How evolution shapes enzyme selectivity–lessons from aminoacyl‐ tRNA synthetases and other amino acid utilizing enzymes. The FEBS Journal, 287(7): 1284–1305, 2020.
doi: 10.1111/febs.15199
Symons RH. Small catalytic RNAs. Annual Review of Biochemistry, 61: 641–671, 1992.
doi: 10.1146/annurev.bi.61.070192.003233
Connell GJ, Illangesekare M, Yarus M. Three small ribooligonucleotides with specific arginine sites. Biochemistry, 32(21): 5497–5502, 1993.
doi: 10.1021/bi00072a002
Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature, 346(6287): 818–822, 1990.
doi: 10.1038/346818a0
Tuerk C, Gold L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science, 249(4968): 505–510, 1990.
doi: 10.1126/science/2200121
Krokhotin A, Houlihan K, Dokholyan NV. iFoldRNA v2: folding RNA with constraints. Bioinformatics, 31(17): 2891–2893, 2015.
doi: 10.1093/bioinformatics/btv221
Bowser MT. SELEX: Just another separation? Analyst, 130(2): 128–130, 2005.
doi: 10.1039/B412492H
Famulok M, Szostak JW. Stereospecific recognition of tryptophan agarose by in vitro selected RNA. Journal of American Chemical Society, 114(10): 3990–3991, 1992.
doi: 10.1021/ja00036a065
Gilbert SD, Rambo SP, Van Tyne D, Batey RT. Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nature Structural & Molecular Biology, 15(2): 177–182, 2008.
doi: 10.1038/nsmb.1371
Lu C, Smith, A.M., Fuchs, R.T., Ding, F., Rajashankar, K., Henkin, T.M., Ke, A. Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Nature Structural & Molecular Biology, 15(10): 1076–1083, 2008.
doi: 10.1038/nsmb.1494
Montange RK, Batey RT. Structure of the S-adenomethionine riboswitch regulatory mRNA element. Nature, 441(7097): 1172–1175, 2006.
doi: 10.1038/nature04819
Garst AD, Heroux A, Rambo RP, Batey RT. Crystal structure of the lysine riboswitch regulatory mRNA element. Journal of Biological Chemistry, 283(33): 22347–22351, 2008.
doi: 10.1074/jbc.C800120200
Serganov A, Huang L, Patel DJ. Structural insight into amino acid binding and gene control by a lysine riboswitch. Nature, 455(7217): 1263–1267, 2008.
doi: 10.1038/nature07326
Yang Y, Kochoyan M, Burgstaller P, Westhof E, Famulok F. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science, 272(5266): 1343–1346, 1996.
doi: 10.1126/science.272.5266.1343
Stefaniak F, Bujnicki JM. AnnapuRNA: A scoring function for predicting RNA-small molecule binding poses. PloS Computational Biology, 17(2): p.e1008309, 2021.
doi: 10.1371/journal.pcbi.1008309
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2): 455–461, 2010.
doi: 10.1002/jcc.21334
Martin MT. Methods and compositions for reverse translation. United State Patent, no: US 7,169,894 B2 (Jan 30, 2007).
Zhang G, Hubalewska M, Ignatova Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nature Structural & Molecular Biology, 16(3): 274–280, 2009.
doi: 10.1038/nsmb.1554
Cottrell TL. The strengths of chemical bonds (2nd ed). Butterworths, London 1958.
Dickson KS., Burns CM, Richardson JP. Determination of the free-energy change for repair of a DNA phosphodiester bond. Journal of Biological Chemistry, 275(21): 15828–15831, 2000.
doi: 10.1074/jbc.M910044199
Martin RB. Free energies and equilibria of peptide bond hydrolysis and formation. Biopolymers, 45(5): 351–353, 1998.
doi: 10.1002
Tu X., Das K, Han Q, Bauman JD, Clark Jr, AD, Hou, X, Frenkel YV, Gaffney BL, Jones RA, Boyer PL, Hughes SH. Structural basis of HIV-1 resistance to AZT by excision. Nature Structural & Molecular Biology, 17(10): 1202–1209, 2010.
doi: 10.1038/nsmb.1908
Alhazmi HA. Mobility shift-affinity capillary electrophoresis for investigation of proteinmetal ion interactions: aspects of method development, validation and high throughput screening. Doctorate Thesis, Faculty of Life Sciences, Technische Universität Braunschweig, Germany. p.2.
Bakış Y, Otu HH, Sezerman OU. Inferring Phylogenies from Physico Chemical Properties of DNA. American Journal of Bioinformatics Research, 2(1): 1–6, 2012.
doi: 10.5923/j.bioinformatics.20120201.01
Andréola ML, Parissi V, Litvak S. 2013. DNA Polymerases: Reverse Transcriptase Integrase, and Retrovirus Replication. In: Lennarz WJ, Lane MD (eds.). Encyclopedia of Biological Chemistry (2nd edition). Academic Press, Massachusetts, USA. pp.101–107, 2013.
doi: 10.1016/B978-0-12-378630-2.00258-9
Ahlquist P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science, 296(5571): 1270–1273, 2002.
doi: 10.1126/science.1069132
Kumar S, Nussinov R. Close‐range electrostatic interactions in proteins. ChemBioChem, 3(7): 604–617, 2002.
doi: 10.1002/1439-7633(20020703)
McClain WH. Rules that Govern tRNA Identity in Protein Synthesis. Journal of Molecular Biology, 234(2): 257–280.
doi: 10.1006/jmbi.1993.1582
Swanson R, Hoben P, Sumner-Smith M, Uemura H, Watson L, Söll D. Accuracy of in Vivo Aminoacylation Requires Proper Balance of tRNA and Aminoacyl-tRNA Synthetase. Science, 242(4885): 1548–1551.
doi: 10.1126/science.3144042
Shen C-H. Diagnostic Molecular Biology, Academic Press, Massachusetts, USA. pp.87–116, 2019.
doi: 10.1016/B978-0-12-802823-0.00004-3
Rose GD, Fleming PJ, Banavar JR, Maritan A. A backbone-based theory of protein folding. Proceedings of the National Academy of Sciences of the United States of America 103(45): 16623–16633.
doi: 10.1073/pnas.0606843103
Anfinsen CB. Principles that Govern the Folding of Protein Chains. Science, 181(4096): 223–229.
doi: 10.1126/science.181.4096.223
Yuan TZ, Ormonde CF, Kudlacek ST, Kunche S, Smith JN, Brown WA, Pugliese KM, Olsen TJ, Iftikhar M, Raston CL, Weiss GA. Shear‐Stress‐Mediated Refolding of Proteins from Aggregates and Inclusion Bodies. ChemBioChem, 16(3): 393–396, 2015.
doi: 10.1002/cbic.201402427
Rogers LD, Overall CM. Proteolytic Post-translational Modification of Proteins: Proteomic Tools and Methodology. Molecular & Cellular Proteomics, 12(12): 3532–3542.
doi: 10.1074/mcp.M113.031310
Edman P, Begg G. A protein sequenator. European Journal of Biochemistry, 1: 80–91, 1967.
doi: 10.1007/978-3-662-25813-2_14
Medzihradszky KF, Chalkley RJ. Lessons in de novo peptide sequencing by tandem mass spectrometry. Mass Spectrometry Reviews, 34(1): 43–63, 2015.
doi: 10.1002/mas.21406
Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RD, Buigues B, Tikhonov A, Huson DH, Tomsho LP, Auch A, Rampp M. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science, 311(5759): 392–394, 2006.
doi: 10.1126/science.1123360
Lee YC, Chiang CC, Huang PY, Chung CY, Huang TD, Wang CC, Chen CI, Chang RS, Liao CH, Reisz RR 2017. Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy. Nature Communications, 8:
doi: 10.1038/ncomms14220
Arnold C., Clewley JP. From ABI Sequence Data to LASERGENE’s EDITSEQ. In: Swindell SR. (eds) Sequence Data Analysis Guidebook. Methods In Molecular Medicine™, Springer, Totowa, 70: 65–74, 1997.
doi: 10.1385/0-89603-358-9:65
Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Research, 28(1): 334–334, 1998.
doi: 10.1093/nar/26.1.334
Bhattacharya M, Sharma AR, Ghosh P, Patra P, Patra BC, Lee SS, Chakraborty C. Bioengineering of novel non-replicating mRNA (NRM) and self-amplifying mRNA (SAM) vaccine candidates against SARS-CoV-2 using immunoinformatics approach. Molecular
Biotechnology, 64(5): 510–525, 2022.
doi: 10.1007/s12033-021-00432-6
Hosseini NG, Tebianian M, Farhadi A, Khani, AH, Rahimi A, Mortazavi M, Hosseini SY, Taghizadeh M, Rezaei M, Mahdavi M. In silico analysis of L1/L2 sequences of human papillomaviruses: implication for universal vaccine design. Viral Immunology, 30(3): 210–223,
doi: 10.1089/vim.2016.0142
Yazdani Z, Rafiei A, Yazdani M, Valadan R. 2020. Design an efficient multi-epitope peptide vaccine candidate against SARS-CoV-2: an in silico analysis. Infection and Drug Resistance, 13: 3007–3022, 2020.
doi: 10.2147/IDR.S264573
Li R, Li L, Xu Y, Yang J. 2022. Machine learning meets omics: applications and perspectives. Briefings in Bioinformatics, 23(1): bbab460, 2022.
doi: 10.1093/bib/bbab460
Verma R, Schwaneberg U, Roccatano D. Computer-aided protein directed evolution: a review of web servers, databases and other computational tools for protein engineering. Computational and Structural Biotechnology Journal, 2(3): e201209008, 2012.
doi: 10.5936/csbj.201209008
Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA: A Cancer Journal for Clinicians, 69(4): 280–304, 2019.
doi: 10.3322/caac.21559
Kinghorn AB, Fraser LA, Liang S, Shiu SCC, Tanner JA. 2017. Aptamer bioinformatics. International Journal of Molecular Sciences, 18(12): 2516.
doi: 10.3390/ijms18122516

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Universitas Scientiarum