New Perspectives on Reverse Translation: Brief History and Applications
PDF

Keywords

amino acids
central dogma
genetic transfer
polypeptide
RNA

How to Cite

New Perspectives on Reverse Translation: Brief History and Applications. (2023). Universitas Scientiarum, 28(1), 1-20. https://doi.org/10.11144/Javeriana.SC281.npor
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

Reverse translation has been an enigmatic part in the Crick’s central dogma of molecular biology since 1950s. Described as the possibility of how protein could use itself as the information molecules that capable to be reverted back to the information in the nucleic acid nucleotides (or codon) or to replicate itself as its nucleic acid counterparts, DNA and RNA. Few studies in the past have attempted to theorize and to conduct in vitro experiment in order to test the possibilities of reverse translation as it believed to be existed back in the ancient Earth. The ideas are including the utilization of antigen determinant site and creation of a hammerhead ribozyme. At the end, the concept requires more follow-up studies as there are some constrains, including the stability of the protein peptide bonds, structural non-uniformity of protein R-groups and asymmetrical informational transfer. Now as bioinformatics rises as the growing branch of biology, it could serve as a tool to answer if reverse translation can be possible in the future that further can be useful to understand the protein-nucleic acid information symmetry in the ancient Earth. Moreover, reverse translation has potential applications in evolutionary biology, synthetic protein to nucleotide reversal and to improve the process in bioinformatics (e.g., via machine learning).

PDF

Crick F. On Protein Synthesis. Symposia of the Society for Experimental Biology, 12: 139–163, 1958.

Crick F. Central dogma of molecular biology. Nature, 227(5258): 561–563, 1970.

doi: 10.1038/227561a0

Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature, 226(5252): 1209–1211, 1970.

doi: 10.1038/2261209a0

Temin HM, Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature, 226(5252): 1211–1213, 1970.

doi: 10.1038/2261211a0

Baltimore D, Eggers HJ, Franklin RM, Tamm I. Poliovirus-induced RNA polymerase and the effects of virus-specific inhibitors on its production. Proceedings of National Academy of Science USA, 49(6): 843–849, 1963.

doi: 10.1073/pnas.49.6.843

Koonin EV. Does the central dogma still stand? Biology Direct, 7(1): 27, 2012.

doi: 10.1186/1745-6150-7-27

Koonin EV. Why the Central Dogma: on the nature of the great exclusion principle. Biology Direct, 10(1): 52, 2015.

doi: 10.1186/s13062-015-0084-3

Rich A. On the problems of evolution and biochemical information transfer. In: Kasha M., Pullman B. (eds.). Horizons in Biochemistry. Academic Press; New York, NY, USA: 1962. pp. 103–126

Lehman N. The RNA World: 4,000,000,050 years old. Life, 5(4): 1583–1586, 2015.

doi: 10.3390/life5041583

Gilbert W. Origin of life: The RNA world. Nature, 319(6055): 618, 1986.

doi: 10.1038/319618a0

Bernhardt HS. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biology Direct, 7(1): 23, 2012.

doi: 10.1186/1745-6150-7-23

Forterre P. The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie, 87(9-10): 793–803, 2005.

doi: 10.1016/j.biochi.2005.03.015

Nashimoto M. The RNA/protein symmetry hypothesis: experimental support for reverse translation of primitive proteins. Journal of Theoretical Biology, 209(2): 181–187, 2001.

doi: 10.1006/jtbi.2000.2253

Lee DH, Granja JR, Martinez JA, Severin K, Ghadiri MR. A self-replicating peptide. Nature, 382(6591): 525–528, 1996.

doi: 10.1038/382525a0

Beekes M, McBride PA. The spread of prions through the body in naturally acquired transmissible spongiform encephalopathies. The FEBS Journal, 274(3): 588–605, 2007.

doi: 10.1111/j.1742-4658.2007.05631.x

Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry, 75: 333–366, 2006.

doi: 10.1146/annurev.biochem.75.101304.123901

Ridley RM. What Would Thomas Henry Huxley Have Made of Prion Diseases? In: Baker HF (ed.). Molecular Pathology of the Prions; Humana Press Inc., NY, 2001; Vol. 59, pp.1-16.

Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Lindquist SL. Self-perpetuating changes in Sup35 protein conformation as a mechanism of heredity in yeast. Biochemical Society Symposia, 68: 35–43, 2001.

doi: 10.1042/bss0680035

Serio TR, Lindquist SL. [PSI+]: an epigenetic modulator of translation termination efficiency. Annual Review of Cell and Development Biology, 15: 661–703, 1999.

doi: 10.1146/annurev.cellbio.15.1.661

Mekler LB. Mechanism of biological memory. Nature, 215(5100): 481–484, 1967.

doi: 10.1038/215481a0

Cook ND. The case for reverse translation. Journal of Theoretical Biology, 64: 113–135, 1977.

doi: 10.1016/0022-5193(77)90116-3

Tawfik DS, Gruic‐Sovulj I. How evolution shapes enzyme selectivity–lessons from aminoacyl‐ tRNA synthetases and other amino acid utilizing enzymes. The FEBS Journal, 287(7): 1284–1305, 2020.

doi: 10.1111/febs.15199

Symons RH. Small catalytic RNAs. Annual Review of Biochemistry, 61: 641–671, 1992.

doi: 10.1146/annurev.bi.61.070192.003233

Connell GJ, Illangesekare M, Yarus M. Three small ribooligonucleotides with specific arginine sites. Biochemistry, 32(21): 5497–5502, 1993.

doi: 10.1021/bi00072a002

Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature, 346(6287): 818–822, 1990.

doi: 10.1038/346818a0

Tuerk C, Gold L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science, 249(4968): 505–510, 1990.

doi: 10.1126/science/2200121

Krokhotin A, Houlihan K, Dokholyan NV. iFoldRNA v2: folding RNA with constraints. Bioinformatics, 31(17): 2891–2893, 2015.

doi: 10.1093/bioinformatics/btv221

Bowser MT. SELEX: Just another separation? Analyst, 130(2): 128–130, 2005.

doi: 10.1039/B412492H

Famulok M, Szostak JW. Stereospecific recognition of tryptophan agarose by in vitro selected RNA. Journal of American Chemical Society, 114(10): 3990–3991, 1992.

doi: 10.1021/ja00036a065

Gilbert SD, Rambo SP, Van Tyne D, Batey RT. Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nature Structural & Molecular Biology, 15(2): 177–182, 2008.

doi: 10.1038/nsmb.1371

Lu C, Smith, A.M., Fuchs, R.T., Ding, F., Rajashankar, K., Henkin, T.M., Ke, A. Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Nature Structural & Molecular Biology, 15(10): 1076–1083, 2008.

doi: 10.1038/nsmb.1494

Montange RK, Batey RT. Structure of the S-adenomethionine riboswitch regulatory mRNA element. Nature, 441(7097): 1172–1175, 2006.

doi: 10.1038/nature04819

Garst AD, Heroux A, Rambo RP, Batey RT. Crystal structure of the lysine riboswitch regulatory mRNA element. Journal of Biological Chemistry, 283(33): 22347–22351, 2008.

doi: 10.1074/jbc.C800120200

Serganov A, Huang L, Patel DJ. Structural insight into amino acid binding and gene control by a lysine riboswitch. Nature, 455(7217): 1263–1267, 2008.

doi: 10.1038/nature07326

Yang Y, Kochoyan M, Burgstaller P, Westhof E, Famulok F. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science, 272(5266): 1343–1346, 1996.

doi: 10.1126/science.272.5266.1343

Stefaniak F, Bujnicki JM. AnnapuRNA: A scoring function for predicting RNA-small molecule binding poses. PloS Computational Biology, 17(2): p.e1008309, 2021.

doi: 10.1371/journal.pcbi.1008309

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2): 455–461, 2010.

doi: 10.1002/jcc.21334

Martin MT. Methods and compositions for reverse translation. United State Patent, no: US 7,169,894 B2 (Jan 30, 2007).

Zhang G, Hubalewska M, Ignatova Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nature Structural & Molecular Biology, 16(3): 274–280, 2009.

doi: 10.1038/nsmb.1554

Cottrell TL. The strengths of chemical bonds (2nd ed). Butterworths, London 1958.

Dickson KS., Burns CM, Richardson JP. Determination of the free-energy change for repair of a DNA phosphodiester bond. Journal of Biological Chemistry, 275(21): 15828–15831, 2000.

doi: 10.1074/jbc.M910044199

Martin RB. Free energies and equilibria of peptide bond hydrolysis and formation. Biopolymers, 45(5): 351–353, 1998.

doi: 10.1002

Tu X., Das K, Han Q, Bauman JD, Clark Jr, AD, Hou, X, Frenkel YV, Gaffney BL, Jones RA, Boyer PL, Hughes SH. Structural basis of HIV-1 resistance to AZT by excision. Nature Structural & Molecular Biology, 17(10): 1202–1209, 2010.

doi: 10.1038/nsmb.1908

Alhazmi HA. Mobility shift-affinity capillary electrophoresis for investigation of proteinmetal ion interactions: aspects of method development, validation and high throughput screening. Doctorate Thesis, Faculty of Life Sciences, Technische Universität Braunschweig, Germany. p.2.

Bakış Y, Otu HH, Sezerman OU. Inferring Phylogenies from Physico Chemical Properties of DNA. American Journal of Bioinformatics Research, 2(1): 1–6, 2012.

doi: 10.5923/j.bioinformatics.20120201.01

Andréola ML, Parissi V, Litvak S. 2013. DNA Polymerases: Reverse Transcriptase Integrase, and Retrovirus Replication. In: Lennarz WJ, Lane MD (eds.). Encyclopedia of Biological Chemistry (2nd edition). Academic Press, Massachusetts, USA. pp.101–107, 2013.

doi: 10.1016/B978-0-12-378630-2.00258-9

Ahlquist P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science, 296(5571): 1270–1273, 2002.

doi: 10.1126/science.1069132

Kumar S, Nussinov R. Close‐range electrostatic interactions in proteins. ChemBioChem, 3(7): 604–617, 2002.

doi: 10.1002/1439-7633(20020703)

McClain WH. Rules that Govern tRNA Identity in Protein Synthesis. Journal of Molecular Biology, 234(2): 257–280.

doi: 10.1006/jmbi.1993.1582

Swanson R, Hoben P, Sumner-Smith M, Uemura H, Watson L, Söll D. Accuracy of in Vivo Aminoacylation Requires Proper Balance of tRNA and Aminoacyl-tRNA Synthetase. Science, 242(4885): 1548–1551.

doi: 10.1126/science.3144042

Shen C-H. Diagnostic Molecular Biology, Academic Press, Massachusetts, USA. pp.87–116, 2019.

doi: 10.1016/B978-0-12-802823-0.00004-3

Rose GD, Fleming PJ, Banavar JR, Maritan A. A backbone-based theory of protein folding. Proceedings of the National Academy of Sciences of the United States of America 103(45): 16623–16633.

doi: 10.1073/pnas.0606843103

Anfinsen CB. Principles that Govern the Folding of Protein Chains. Science, 181(4096): 223–229.

doi: 10.1126/science.181.4096.223

Yuan TZ, Ormonde CF, Kudlacek ST, Kunche S, Smith JN, Brown WA, Pugliese KM, Olsen TJ, Iftikhar M, Raston CL, Weiss GA. Shear‐Stress‐Mediated Refolding of Proteins from Aggregates and Inclusion Bodies. ChemBioChem, 16(3): 393–396, 2015.

doi: 10.1002/cbic.201402427

Rogers LD, Overall CM. Proteolytic Post-translational Modification of Proteins: Proteomic Tools and Methodology. Molecular & Cellular Proteomics, 12(12): 3532–3542.

doi: 10.1074/mcp.M113.031310

Edman P, Begg G. A protein sequenator. European Journal of Biochemistry, 1: 80–91, 1967.

doi: 10.1007/978-3-662-25813-2_14

Medzihradszky KF, Chalkley RJ. Lessons in de novo peptide sequencing by tandem mass spectrometry. Mass Spectrometry Reviews, 34(1): 43–63, 2015.

doi: 10.1002/mas.21406

Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RD, Buigues B, Tikhonov A, Huson DH, Tomsho LP, Auch A, Rampp M. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science, 311(5759): 392–394, 2006.

doi: 10.1126/science.1123360

Lee YC, Chiang CC, Huang PY, Chung CY, Huang TD, Wang CC, Chen CI, Chang RS, Liao CH, Reisz RR 2017. Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy. Nature Communications, 8:

doi: 10.1038/ncomms14220

Arnold C., Clewley JP. From ABI Sequence Data to LASERGENE’s EDITSEQ. In: Swindell SR. (eds) Sequence Data Analysis Guidebook. Methods In Molecular Medicine™, Springer, Totowa, 70: 65–74, 1997.

doi: 10.1385/0-89603-358-9:65

Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Research, 28(1): 334–334, 1998.

doi: 10.1093/nar/26.1.334

Bhattacharya M, Sharma AR, Ghosh P, Patra P, Patra BC, Lee SS, Chakraborty C. Bioengineering of novel non-replicating mRNA (NRM) and self-amplifying mRNA (SAM) vaccine candidates against SARS-CoV-2 using immunoinformatics approach. Molecular

Biotechnology, 64(5): 510–525, 2022.

doi: 10.1007/s12033-021-00432-6

Hosseini NG, Tebianian M, Farhadi A, Khani, AH, Rahimi A, Mortazavi M, Hosseini SY, Taghizadeh M, Rezaei M, Mahdavi M. In silico analysis of L1/L2 sequences of human papillomaviruses: implication for universal vaccine design. Viral Immunology, 30(3): 210–223,

doi: 10.1089/vim.2016.0142

Yazdani Z, Rafiei A, Yazdani M, Valadan R. 2020. Design an efficient multi-epitope peptide vaccine candidate against SARS-CoV-2: an in silico analysis. Infection and Drug Resistance, 13: 3007–3022, 2020.

doi: 10.2147/IDR.S264573

Li R, Li L, Xu Y, Yang J. 2022. Machine learning meets omics: applications and perspectives. Briefings in Bioinformatics, 23(1): bbab460, 2022.

doi: 10.1093/bib/bbab460

Verma R, Schwaneberg U, Roccatano D. Computer-aided protein directed evolution: a review of web servers, databases and other computational tools for protein engineering. Computational and Structural Biotechnology Journal, 2(3): e201209008, 2012.

doi: 10.5936/csbj.201209008

Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA: A Cancer Journal for Clinicians, 69(4): 280–304, 2019.

doi: 10.3322/caac.21559

Kinghorn AB, Fraser LA, Liang S, Shiu SCC, Tanner JA. 2017. Aptamer bioinformatics. International Journal of Molecular Sciences, 18(12): 2516.

doi: 10.3390/ijms18122516

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Universitas Scientiarum