Published Jul 26, 2024



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Daniela Garcia Moreno https://orcid.org/0000-0002-3446-1046

Diana Milena Morales Fonseca https://orcid.org/0000-0002-5355-2891

Gloria Astrid Nausa Galeano https://orcid.org/0000-0002-5905-6151

##plugins.themes.bootstrap3.article.details##

Abstract

Low-density polyethylene (LDPE) is a widely used polymer due to its chemical resistance, high flexibility, and mechanical properties. However, its low degradation rate, coupled with its low lifespan and widespread accumulation, poses significant environmental and public health concerns. This study presents a biodegradation model for LDPE using a suspension bioreactor, which could serve as a biological treatment alternative before polymer disposal. In our model, an initial culture of Aspergillus brasiliensis metabolized the carbon within the polymer structure and used it as an energy source, leading to LPDE biodegradation and mineralization. The procedure took place in a laboratory-scale bioreactor prototype under aerobic conditions and submerged liquid fermentation. After one month of culture, a biodegradation percentage of 1:890:56 % was reached. The treated materials were analyzed by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). We found evidence of biodegradation, colonization of the material, and biofilm formation. This research provides preliminary data on the biodegradation of LDPE under submerged liquid fermentation, marking an initial phase in the development of a prototype for polymer biodegradation.

Keywords

Aspergillus brasiliensis; biodegradation; low-density polyethylene (LDPE); Scanning Electron Microscopy (SEM); submerged liquid fermentation

References
[1] ONU. From Pollution to Solution: A global assessment of marine litter and plastic pollution. 2021
https://www.unep.org/resources
[2] BC Noticias. Colombia entierra anualmente 2 billones de pesos en plásticos que se pueden reciclar. 2019
https://www.bcnoticias.com.co
[3] Mogollon HL, Sarmiento LD, Algecira NA & Morales DM. Utilización de inóculos microbianos para la biodegradación de películas de ácido poliláctico. Investigación Formativa en Ingeniería. In: Colombia, ed.4: Instituto Antioqueño de Investigación, 616-623, 2020
doi: 10.5281/zenodo.4031253
[4] Moreno LAC, Fonseca DM. Biodegradación de láminas de polietileno de baja densidad LDPE pretratadas por radiación UV, en humus de lombriz y Aspergillus brasiliensis. Desarrollo e Innovación en Ingeniería. Colombia. ed. 6: Instituto Antioqueño de Investigación, 425-433, 2021.
doi: 10.5281/zenodo.5513899
[5] Khruengsai S, Sripahco T, Pripdeevech P. Low-Density Polyethylene Film Biodegradation Potential by Fungal Species from Thailand. Journal of Fungi. 7: 594, 2021.
doi: 10.3390/jof7080594
[6] Dsouza GC, Sheriff RS, Ullanat V, Shrikrishna A, Joshi AV, Hiremath L, & Entoori K. Fungal biodegradation of low-density polyethylene using consortium of Aspergillus species under controlled conditions. Heliyon. 7, 2021.
doi: 10.1016/j.heliyon.2021.e07008
[7] Ghosh SK, Pal S. De-polymerization of LDPE plastic by Penicillium simplicissimum isolated from municipality garbage plastic and identified by ITSs locus of Rdna. Vegetos. 34: 57-67, 2021.
doi: 10.1007/s42535-020-00176-9
[8] Chaudhary AK, Chaitanya K, Dalmia R, Vijayakumar RP. Synergistic effect of UV, thermal, and chemical treatment on biological degradation of low-density polyethylene (LDPE) by Thermomyces lanuginosus. Environmental Monitoring and Assessment. 193: 1-11, 2021.
doi: 10.1007/s10661-021-09296-4
[9] Awasthi S, Srivastava N, Singh T, Tiwary D, Mishra PK. Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5. 3 Biotech. 7: 73, 2017.
doi: 10.1007/s13205-017-0699-4
[10] Sanniyasi E, Gopal RK, Gunasekar DK, Raj PP. Biodegradation of low-density polyethylene (LDPE) sheet by microalga, Uronema africanum Borge. Scientific Reports. 11: 1-33, 2021.
doi: 10.1038/s41598-021-96315-6
[11] Calcetero Moreno LA, Mancera Hernández JC. Evaluación del proceso de colonización y degradación de polietileno de baja densidad por inóculo de Aspergillus niger en humus y compostaje doméstico Universidad de America, Bogota, Colombia, 2021.
https://repository.uamerica.edu.co
[12] Suresh A, Alex AR, Abraham J. Fungal Mediated Conversion of Food Waste to Compost. Current Trends in Biotechnology and Pharmacy. 15: 4-9, 2021.
doi: 10.5530/ctbp.2021.6.2
[13] Sanchez-Herrera R, Flores-Villavicencio LL, Padilla-Guerrero I, Barbosa Sabanero G, Sabanero-Lopez M. Formación de biopelículas en el hongo patógeno Sporothrix schenckii: desarrollo, arquitectura y características bioquímicas. Acta Universitaria. 24: 11-15, 2014.
doi: 10.15174/au.2014.716
[14] ICONTEC. Norma Técnica Colombiana NTC 5146 Bebidas alcohólicas. Método para determiner el contenido de azucar.
[15] Montañez LJ. Cuantificación de azúcares reductores del sustrato en residuos de piña con el método del ácido 3, 5-dinitrosalicílico. Revista de innvestigación. 13: 57-66, 2020.
doi: 10.29097/23461098.308
[16] Miller GL. Determination of reducing sugar by DNS method. Analytical Chemistry, 31: 426–428, 1959.
[17] ZEISS. Research Microscopy Solutions. 2020
https://www.zeiss.com/microscopy/es/productos/sem-fib-sem/sem/evo.html#
[18] Bruker. Espectrómetro FT-IR compacto. 2023
https://www.bruker.com
[19] Purahong, W., Wahdan, S. F. M., Heinz, D., Jariyavidyanont, K., Sungkapreecha, C., Tanunchai, B., Buscot, F. Back to the future: Decomposability of a biobased and biodegradable plastic in field soil environments and its microbiome under ambient and future climates. Environmental Science & Technology, 55: 12337-12351, 2021.
doi: 10.1021/acs.est.1c02695
[20] Malachová K, Novotný C, Adamus G, Lotti N, Rybková Z, Soccio M, Fava F. Ability of Trichoderma hamatum Isolated from Plastics-Polluted Environments to Attack Petroleum- Based, Synthetic Polymer Films. Processes, 8: 467, 2020.
doi: 10.3390/pr8040467
[21] Xiaojing Hu, Haidong Gu, Xiangxin Sun, Yongbin Wang, Junjie Liu, Zhenhua Yu, Yansheng Li, Jian Jin, Guanghua Wang. Distinct influence of conventional and biodegradable microplastics on microbe-driving nitrogen cycling processes in soils and plastispheres as
evaluated by metagenomic analysis. Journal of Hazardous Materials, 451, 2023.
doi: 10.1016/j.jhazmat.2023.131097
[22] Anselmo R and Flores R. Actividad Antimicótica del Extracto Etanólico de las Hojas de Lomanthus truxillensis Cabrera en cepas de Candida albicans ATCC 10231 y Aspergillus brasiliensis ATCC 16404, in vitro. Universidad Inca Garcilaso de la Vega, Lima, Peru, 2018.
http://repositorio.uigv.edu.pe
[23] Srikanth, M., Sandeep, T S R S., Sucharitha, K., Godi, S. Biodegradation of plastic polymers by fungi: a brief review. Bioresources and Bioprocessing, 9: 42, 2022.
doi: 10.1186/s40643-022-00532-4
[24] López, L. F., Morales-Fonseca, D. Evaluation of the Biodegradation Process of Low-density Polyethylene by Aspergillus brasiliensis in Soil. Chemical Engineering Transactions, 99, 397-402, 2023.
doi: 10.3303/CET2399067
[25] Cabra, J.R.V. Identificación de polímeros por espectroscopia infrarroja. Revista Ontare, 5: 115-140, 2017.
doi: 10.21158/23823399.v5.n0.2017.2005
[26] Khan, S., Ali, S. A., Ali, A. S. Biodegradation of low density polyethylene (LDPE) by mesophilic fungus ‘Penicillium citrinum’isolated from soils of plastic waste dump yard, Bhopal, India. Environmental Technology, 1-15, 2022.
doi: 10.1080/09593330.2022.2027025
[27] Elsamahy, T., Sun, J., Elsilk, S. E., Ali, S. S. Biodegradation of low-density polyethylene plastic waste by a constructed tri-culture yeast consortium from wood-feeding termite: Degradation mechanism and pathway. Journal of Hazardous Materials, 448, 2023.
doi: 10.1016/j.jhazmat.2023.130944
[28] Vusal Guliyev, Benjawan Tanunchai, Matthias Noll, François Buscot, Witoon Purahong, Evgenia Blagodatskaya. Links among Microbial Communities, Soil Properties and Functions: Are Fungi the Sole Players in Decomposition of Bio-Based and Biodegradable Plastic?. Polymers, 14: 2801, 2022.
doi: 10.3390/polym14142801
[29] Temporiti, M. E. E., Nicola, L., Nielsen, E., Tosi, S. Fungal enzymes involved in plastics biodegradation. Microorganisms, 10: 1180, 2022.
doi: 10.3390/microorganisms10061180
[30] Ojha, N, Pradhan, N, Singh, S., Barla, A., Shrivastava, A., Khatua, P., Bose, S. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Scientific Reports, 7: 1-13, 2017.
doi: 10.1038/srep39515
[31] Ghosh, S. K, Pal, S. De-polymerization of LDPE plastic by Penicillium simplicissimum isolated from municipality garbage plastic and identified by ITSs locus of Rdna. Vegetos, 34: 57-67, 2021.
doi: 10.1007/s42535-020-00176-9
[32] Muhonja, C., Makonde, H., Magoma, G, Imbuga, M. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PloS one, 13, 2018.
doi: 10.1371/journal.pone.0198446
[33] Mohanan N, Montazer Z, Sharma P, Levin D. Microbial and Enzymatic Degradation of Synthetic Plastics. Frontiers Microbiology,11,2020.
doi: 10.3389/fmicb.2020.580709
How to Cite
Garcia Moreno, D., Morales Fonseca, D. M., & Nausa Galeano, G. A. (2024). Development of a Bioreactor-Based Model for low-density polyethylene (LDPE) Biodegradation by Aspergillus brasiliensis. Universitas Scientiarum, 29(2), 127–144. https://doi.org/10.11144/Javeriana.SC292.doab
Section
Applied Microbiology