Sleepy but Active: Screen-printed Gold Nanoparticle Electrodes Modified with Sleepy Plant (Mimosa pudica) Peroxidase for Hydrogen Peroxide Detection
PDF
Supp 1

Keywords

Sleepy plant
Peroxidase
Hydrogen peroxide
Electrochemical detection
Biosensing
Screen-printed electrodes

How to Cite

Sleepy but Active: Screen-printed Gold Nanoparticle Electrodes Modified with Sleepy Plant (Mimosa pudica) Peroxidase for Hydrogen Peroxide Detection. (2025). Universitas Scientiarum, 30, 247-267. https://doi.org/10.11144/Javeriana.SCSI30.sbas
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

The Mimosa pudica, commonly known as the "sleepy plant," is renowned for its rapid leaf-folding response to touch, embodying an intriguing blend of dormancy and activity. Inspired by this unique behavior, we have developed a novel electrochemical sensor using screen-printed gold nanoparticle electrodes (SPGNPE) tretaed with Mimosa pudica peroxidase (MPP) for hydrogen peroxide determination (H₂O₂). The MPP exhibit a specific activity of 122.9 U/mg and operate optimally at pH 4.0 and a temperature of 55°C, indicating their robust performance under mildly acidic and moderately high-temperature conditions. The enzyme's inactivation rate constant (kinact) was determined to be -0.018 min-1, suggesting a lnstable enzymatic activity over time. Cyclic voltammetry (CV) experiments using potassium ferrocyanide as a redox probe demonstrated a significant increasing in current signal in the presence of MPP, indicating effective interaction of electrons with the redox compounds and the electrode interface. The linear relationship between the square root of the scan rate and the anodic and cathodic peaks, suggesting a surface controlled, semi-reversible process involving the migration of the electrochemically active species to the electrode interface. A low limit of detection (LOD) of 0.4 µM was achieved, accompanied by a sensitivity of 0.039 µA/µM, demonstrating the electrode's capability for precise and sensitive H₂O₂ quantification. This study highlights the unique application of the "sleepy plant" peroxidase, revealing its potential as a robust and sensitive novel bioelement in electrochemical sensing platforms. The synergy between nanomaterials and biological catalysts opens new avenues for environmentally-friendly and efficient detection systems.

PDF
Supp 1

[1] Freitas CDT, Costa JH, Germano TA, de O. Rocha R, Ramos MV, Bezerra LP. Class III plant peroxidases: From classification to physiological functions. International Journal of Biological Macromolecules, 263: 130306, 2024.

https://doi.org/10.1016/j.ijbiomac.2024.130306

[2] Hiner ANP, Ruiz JH, Rodri JN, López A, Cánovas FG, Brisset NC, Smith AT, Arnao MB, Acosta M. Reactions of the class II peroxidases, lignin peroxidase and Arthromyces ramosus peroxidase, with hydrogen peroxide: Catalase-like activity, compound III formation, and enzyme inactivation. Journal of Biological Chemistry, 277(30): 26879–26885, 2002.

https://doi.org/10.1074/jbc.M200002200

[3] Mathé C, Barre A, Jourda C, Dunand C. Evolution and expression of class III peroxidases. Archives of Biochemistry and Biophysics, 500(1): 58–65, 2010.

https://doi.org/10.1016/j.abb.2010.04.007

[4] De Oliveira F. K, Santos L. O, Buffon J. G. Mechanism of action, sources, and application of peroxidases. Food Research International, 143: 110266, 2021.

https://doi.org/10.1016/j.foodres.2021.110266

[5] Pandey V. P, Awasthi M, Singh S, Tiwari S, Dwivedi U. N. A Comprehensive Review on Function and Application of Plant Peroxidases. Biochemistry & Analytical Biochemistry, 06(01): 308, 2017.

https://doi.org/10.4172/2161-1009.1000308

[6] Ayala M., Roman R., Vazquez-Duhalt R. A catalytic approach to estimate the redox potential of heme-peroxidases, Biochemical and Biophysical Research Communications (BBRC), 357:804–808, 2007.

https://doi.org/10.1016/j.bbrc.2007.04.020

[7] Brusova Z., Ferapontova E.E., Sakharov I.Y., Magner E., Gorton L. Bioelectrocatalysis of plant peroxidases immobilized on graphite in aqueous and mixed solvent media, Electroanalysis, 17:460–468, 2005.

https://doi.org/10.1002/elan.200403182

[8] Skulj S., Ko ˘ zić M., Bari ˘ sić A., Vega A. Biarnés X., Piantanida I., Barisic I., Berto ˘ sa B. ˘ Comparison of two peroxidases with high potential for biotechnology applications – HRP vs. APEX2. Computational and Structural Biotechnology Journal, 23:742–751, 2024.

https://doi.org/10.1016/j.csbj.2024.01.001

[9] Alpeeva, I.S., Sakharov, I.Y. Luminol oxidation catalyzed by royal palm leaf peroxidase. Applied Biochemistry and Microbiology. 43, 25–28 (2007).

https://doi.org/10.1134/S0003683807010048

[10] Bhapkar S., Choudhari U., Jadhav U., Jagtap S. Evaluation of soybean peroxidase–copper phosphate mediated organic–inorganic hybrid for hydrogen peroxide biosensor application. Sensors International, 4, 2023.

https://doi.org/10.1016/j.sintl.2023.100242

[11] Sellami K., Couvert A., Nasrallah N., Maachi R., Abouseoud M., Amrane A. Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review. Science of the Total Environment, 806:150500, 2022.

https://doi.org/10.1016/j.scitotenv.2021.150500

[12] Bilal M., Barceló D., Iqbal H.M.N. Nanostructured materials for harnessing the power of horseradish peroxidase for tailored environmental applications, 749: 142360, 2020.

https://doi.org/10.1016/j.scitotenv.2020.142360

[13] Noor M., Muhammad G., Hanif H., Hussain M.A., Iqbal M.M., Mehmood U., Taslimi P., Shafiq Z. Structure, chemical modification, and functional applications of mucilage from Mimosa pudica seeds – A review, International Journal of Biological Macromolecules, 2024.

https://doi.org/10.1016/j.ijbiomac.2024.132390

[14] Hagihara T., Mano H., Miura T., Hasebe M., Toyota M. Calcium-mediated rapid movements defend against herbivorous insects in Mimosa pudica, Nature Communications, 13, 2022.

https://doi.org/10.1038/s41467-022-34106-x

[15] Dhanush C., Aravindh S., Jesreena J.S., Nagadharshini R., Jano N., Almeer R., Velu S.K.P. Biomimetic synthesis of carbon dots from Mimosa pudica leaves for enhanced bioimaging, Waste and Biomass Valorization, 2024.

https://doi.org/10.1007/s12649-024-02675-1

[16] Adurosakin O.E., Iweala E.J., Otike J.O., Dike E.D., Uche M.E., Owanta J.I., Ugbogu O.C., Chinedu S.N., Ugbogu E.A. Ethnomedicinal uses, phytochemistry, pharmacological activities and toxicological effects of Mimosa pudica – A review, Pharmacological Research modern Chinese Medicine, 2023.

https://doi.org/10.1016/j.prmcm.2023.100241

[17] Adegoke H.I., Gbenga A.A. Bio-assisted synthesis of zinc oxide nanoparticles from Mimosa pudica aqueous leaf extract: Structure and antibacterial activity. Chemistry Africa, 6:1283–1296, 2023.

https://doi.org/10.1007/s42250-022-00581-4

[18] Aishan Y., Funano S., Sato A., Ito Y., Ota N., Yalikun Y., Tanaka Y. Bio-actuated microvalve in microfluidics using sensing and actuating function of Mimosa pudica, Scientific Reports, 12:7653, 2022.

https://doi.org/10.1038/s41598-022-11637-3

[19] Yu I, Gerardo S, Ardilal B, Sakharova IV. Peroxidasa de plantas tropicales, Revista Colombiana de Química, 28:97–106, 2010.

[20] Cerdeira Ferreira LM, Lima D, Marcolino-Junior LH, Bergamini MF, Kuss S, Campanhã Vicentini F. Cutting-edge biorecognition strategies to boost the detection performance of COVID-19 electrochemical biosensors: A review, Biochemistry, 157: 108632,2024.

https://doi.org/10.1016/j.bioelechem.2023.108632

[21] Rauf S, Nawaz H, Akhtar K, Ghauri MA, Khalid AM. Studies on sildenafil citrate (Viagra) interaction with DNA using electrochemical DNA biosensor. Biosensors and Bioelectronics. 22: 2471–2477, 2007.

https://doi.org/10.1016/j.bios.2006.09.023

[22] Forzato C, Vida V, Berti F. Biosensors and Sensing Systems for Rapid Analysis of Phenolic Compounds from Plants: A Comprehensive Review, Biosensors, 10(9): 105, 2020.

https://doi.org/10.3390/bios10090105

[23] Boruah JS, Kalita P, Chowdhury D, Barthakur M. Conjugation of citrate capped gold nanoparticles with gabapentin to use as biosensor, Materials Today Proceedings. 46(14):6404–6408, 2019.

https://doi.org/10.1016/j.matpr.2020.06.422

[24] Orduz AE, Gutiérrez JA, Blanco SI, Castillo JJ. Amperometric detection of triclosan with screen-printed carbon nanotube electrodes modified with Guinea Grass (Panicum maximum) peroxidase, Universitas Scientiarum. 24(2):363–379, 2019.

https://doi.org/10.11144/javeriana.sc24-2.adot

[25] Alvarez-Paguay J, Fernández L, Bolaños-Méndez D, González G, Espinoza-Montero PJ. Evaluation of an electrochemical biosensor based on carbon nanotubes, hydroxyapatite and horseradish peroxidase for the detection of hydrogen peroxide, Sensing and Bio-sensing Research. 37, 2022.

https://doi.org/10.1016/j.sbsr.2022.100514

[26] Zakiyyah, S.N., Irkham, Einaga, Y., Gultom, N.S., Fauzia, R.P., Kadja, G.T.M., Gaffar, S., Ozsoz, M., Hartati, Y.W.: Green Synthesis of Ceria Nanoparticles from Cassava Tubers for Electrochemical Aptasensor Detection of SARS-CoV-2 on a Screen-Printed Carbon Electrode, ACS Applied Bio Materials, 7(4):2488-2498, 2024.

https://doi.org/10.1021/acsabm.4c00088

[27] Valsalakumar VC, Joseph AS, Piyus J, Vasudevan S. Polyaniline-Graphene Oxide Composites Decorated with ZrO2 Nanoparticles for Use in Screen-Printed Electrodes for Real-Time l-Tyrosine Sensing. ACS Applied Nano Materials. 6, 8382–8395, 2023.

https://doi.org/10.1021/acsanm.3c00659

[28] Castillo, J., Guarin-Guio, P.A., Ortiz, L.: Bio-Electrocatalytic Reduction of Hydrogen Peroxide by Peroxidase from Guinea Grass (Panicum Maximum) Immobilized on Graphene and Graphene Oxide Screen-Printed Electrodes, Ingenieria y Universidad, 26, 2022.

https://doi.org/10.11144/javeriana.iued26.brhp

[29] González-Hernández J, Moya-Alvarado G, Alvarado-Gámez AL, Urcuyo R, Barquero-Quirós M, Arcos-Martínez MJ. Electrochemical biosensor for quantitative determination of fentanyl based on immobilized cytochrome c on multi-walled carbon nanotubes modified screen-printed carbon electrodes, Microchimica Acta, 189, 2022.

https://doi.org/10.1007/s00604-022-05578-x

[30] Org, W.E., Farghali, R.A., Ahmed, R.A. Gold Nanoparticles-Modified Screen-Printed Carbon Electrode for Voltammetric Determination of Sildenafil Citrate (Viagra) in Pure Form, Biological and Pharmaceutical Formulations, International Journal of Electrochemical Science, 2015.

https://doi.org/10.1016/S1452-3981(23)05088-5

[31] Parkhe VS, Tiwari AP. Gold nanoparticles-based biosensors: pioneering solutions for bacterial and viral pathogen detection a comprehensive review, World Journal of Microbiology and Biotechnology, 40:269, 2024.

https://doi.org/10.1007/s11274-024-04072-1

[32] Sakharov, I.Y.: Palm tree peroxidases, Biochemistry (Moscow), 69, 823–829, 2004.

https://doi.org/10.1023/B:BIRY.0000040213.91951.bc

[33] Sakharov IY, Vorobiev AC, Leon JJC. Synthesis of polyelectrolyte complexes of polyaniline and sulfonated polystyrene by palm tree peroxidase, Enzyme Microbial Technology, 33, 661–667, 2003.

https://doi.org/10.1016/S0141-0229(03)00188-1

[34] Alpeeva IS, Niculescu-Nistor M, Leon JC, Csöregi E, Sakharov IY. Palm tree peroxidase-based biosensor with unique characteristics for hydrogen peroxide monitoring. Biosens Bioelectron. 21, 742–748, 2005.

https://doi.org/10.1016/j.bios.2005.01.008

[35] Thulasiprevinnah S, Bashir S, Ramesh K, Ramesh S. Recent advances in electrochemical biosensors for the determination of biomolecules on modified and unmodified electrodes, 2024.

https://doi.org/10.1007/s13738-024-03050-6

[36] Mathebe NGR, Morrin A, Iwuoha EI. Electrochemistry and scanning electron microscopy of polyaniline/ peroxidase-based biosensor. In: Talanta. pp. 115–120. Elsevier 2004.

[37] Caramyshev AV, Evtushenko EG, Ivanov VF, Barceló AR, Roig MG, Shnyrov VL, van Huystee RB, Kurochkin IN, Vorobiev AK, Sakharov IY. Synthesis of conducting polyelectrolyte complexes of polyaniline and poly (2-acrylamido-3-methyl-1-propanesulfonic acid) catalyzed by pH-stable palm tree peroxidase, Biomacromolecules, 6: 1360–1366, 2005.

https://doi.org/10.1021/bm049370w

[38] Li Y, Schluesener HJ, Xu S. Gold nanoparticle-based biosensors, Gold Bull, 43: 29–41, 2010.

https://doi.org/10.1007/BF03214964

[39] Biocatalysis Based on Heme Peroxidases. Springer, 2010.

https://link.springer.com/book/10.1007/978-3-642-12627-7

[40] Castillo J, Ferapontova E, Hushpulian D, Tasca F, Tishkov V, Chubar T, Gazaryan I, Gorton L. Direct electrochemistry and bioelectrocatalysis of H2O2 reduction of recombinant tobacco peroxidase on graphite. Effect of peroxidase single-point mutation on Ca2+-modulated catalytic activity, Journal of Electroanalytical Chemistry, 588: 112–121, 2006.

https://doi.org/10.1016/j.jelechem.2005.12.010

[41] Roth JP, Cramer CJ. Direct examination of H2O2 activation by a heme peroxidase, Journal of the American Chemical Society, 130: 7802–7803, 2008.

https://doi.org/10.1021/ja802098c

[42] Caglar B, İçer F, Özdokur KV, Caglar S, Özdemir AO, Guner EK, Beşer BM, Altay A, Çırak Ç, Doğan B, Tabak A. A novel amperometric H2O2 biosensor constructed by cress peroxidase entrapped on BiFeO3 nanoparticles, Materials Chemistry and Physics, 262, 2021.

https://doi.org/10.1016/j.matchemphys.2021.124287

[43] Uribe PA, Ortiz CC, Centeno DA, Castillo JJ, Blanco SI, Gutierrez JA. Self-assembled Pt screen printed electrodes with a novel peroxidase Panicum maximum and zinc oxide nanoparticles for H2O2 detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561:18–24, 2019.

https://doi.org/10.1016/j.colsurfa.2018.10.051

[44] Roth JP, Cramer CJ. Direct examination of H2O2 activation by a heme peroxidase. Journal of the American Chemical Society, 130:7802–7803, 2008.

https://doi.org/10.1021/ja802098c

[45] Centeno DA, Solano XH, Castillo JJ. A new peroxidase from leaves of guinea grass (Panicum maximum): A potential biocatalyst to build amperometric biosensors. Bioelectrochemistry, 116:33–38, 2017.

https://doi.org/10.1016/j.bioelechem.2017.03.005

[46] Mathebe NGR, Morrin A, Iwuoha EI. Electrochemistry and scanning electron microscopy of polyaniline/peroxidase-based biosensor. Talanta, 64:115–120, 2004.

https://doi.org/10.1016/j.talanta.2003.11.050

[47] Gaspar S, Catalin Popescu I, Gazaryan IG, Bautista AG, Sakharov IY, Mattiasson B, Csöregi E. Biosensors based on novel plant peroxidases: a comparative study, Electrochimica Acta, 2000.

https://doi.org/10.1016/S0013-4686(00)00580-6

[48] Adachi T, Kitazumi Y, Shirai O, Kano K. Direct electron transfer-type bioelectrocatalysis of redox enzymes at nanostructured electrodes, 10(2):236, 2020.

https://doi.org/10.3390/catal10020236

[49] Ferapontova EE, Castillo J, Hushpulian D, Tishkov V, Chubar T, Gazaryan I, Gorton L. Direct electrochemistry of recombinant tobacco peroxidase on gold. Electrochemistry Communications, 7:1291–1297, 2005.

https://doi.org/10.1016/j.elecom.2005.09.004

[50] Dequaire M, Limoges B, Moiroux J, Savéant JM. Mediated electrochemistry of horseradish peroxidase. Catalysis and inhibition. Journal of the American Chemical Society, 124:240–253, 2002.

https://doi.org/10.1021/ja0170706

[51] Léger C, Bertrand P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies, Chemical Reviews, 108(7):2379-2438, 2008.

https://doi.org/10.1021/cr0680742

[52] Bhapkar S, Choudhari U, Jadhav U, Jagtap S. Evaluation of soybean peroxidase–copper phosphate mediated organic-inorganic hybrid for hydrogen peroxide biosensor application. Sensors International, 4, 2023.

https://doi.org/10.1016/j.sintl.2023.100242

[53] Nandini S, Nalini S, Manjunatha R, Shanmugam S, Melo JS, Suresh GS. Electrochemical biosensor for the selective determination of hydrogen peroxide based on the co-deposition of palladium, horseradish peroxidase on functionalized-graphene modified graphite electrode as composite. Journal of Electroanalytical Chemistry, 689:233-242, 2013.

https://doi.org/10.1016/j.jelechem.2012.11.004

[54] Centeno DA, Solano XH, Castillo JJ. A new peroxidase from leaves of guinea grass (Panicum maximum): A potential biocatalyst to build amperometric biosensors. Bioelectrochemistry, 116:33–38, 2017.

https://doi.org/10.1016/j.bioelechem.2017.03.005

[55] Castillo J, Guarin-Guio PA, Ortiz L. Bio-electrocatalytic reduction of hydrogen peroxide by peroxidase from guinea grass (Panicum maximum) immobilized on graphene and graphene oxide screen-printed electrodes. Ingeniería y Universidad, 26, 2022.

https://doi.org/10.11144/javeriana.iued26.brhp

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Prof. John Castillo, Juan Blanco, Herminsul Cano