Amperometric detection of triclosan with screen-printed carbon nanotube electrodes modified with Guinea Grass (Panicum maximum) peroxidase
##plugins.themes.bootstrap3.article.details##
Triclosan is a compound with antimicrobial activity broadly used in consumer products. Because of its well documented toxicity, the amount of triclosan present in different products needs to be tightly controlled. This paper outlines a new amperometric sensor for triclosan detection consisting of a screen-printed carbon nanotube electrode (SPCNE) modified w ith Guinea grass peroxidase (GGP). The GGP-modified S PCNE was a ble t o d etect an enhanced electrochemical response of triclosan, unlike the bare SPCNE. The cyclic voltammograms of the GGP-modified SPCNE in a solution of potassium ferrocyanide showed an increase in the current values and linearity between scan rates and oxidation peak currents, suggesting a surface controlled process. The GGP-modified SPCNEs howed an excellent electrocatalytic activity to triclosan oxidation, at a redox potential of 370 mV, in the presence of hydrogen peroxide, exhibiting a linear response between 20 mM to 80 mM and a detection limit of 3 µM. This new amperometry system, based on carbon nanotubes integrated with GGP, becomes a potential tool for environmental analysis and food quality control.
amperometric biosensor, carbon nanotubes, guinea grass peroxidase, screen printed electrodes, triclosan
doi: 10.1016/j.jhazmat.2008.12.026
Besharati M, Saboury A, Poostchi A, Rashidi A. Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradation of high phenol concentration, International Journal of Biological Macromolecules, 106: 1314-1322, 2018.
doi: 10.1016/j.ijbiomac.2017.08.133
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding, Analytical Biochemestry, 72: 248-254, 1976.
doi: 10.1016/0003-2697(76)90527-3
Brusova Z, Ferapontova EE, Sakharov Y, Magner E. Bioelectrocatalysis of Plant Peroxidases Immobilized on Graphite in Aqueous and Mixed Solvent Media, Electroanalysis, 17: 460-468, 2005.
doi: 10.1002/elan.200403182
Centeno D, Solano X, Castillo J. A new peroxidase from leaves of guinea grass (Panicum maximum): A potential biocatalyst to build amperometric biosensors, Bioelectrochemistry, 116: 33-38, 2017
doi: 10.1016/j.bioelechem.2017.03.005
Dai H, Xu G, Gong L, Yang G, Lin Y, Tong Y, Chen J. Electrochemical detection of triclosan at a glassy carbon electrode modifies with carbon nanodots and chitosan, Electrochimica Acta, 80: 362-367, 2012.
doi: 10.1016/j.electacta.2012.07.032
Fotouhi L, Shahbaazi HR, Fatehi A, Heravi M. Voltammetric Determination of Triclosan in Waste Water and Personal Care Products, International Journal of Electrochemistry Science, 5: 1390- 1398, 2010.
doi: 10.2010/i.jes.2010.12
Gaspar S. Biosensors based on novel plant peroxidases: a comparative study, Electrochimica Acta, 46: 255-264, 2000.
doi: 10.1016/S0013-4686(00)00580-6
Guo J, Li X, Cao X, Li Y, Wang X, Xu X. Determination of triclosan, triclocarban and methyl-triclosan in aqueous samples by dispersive liquid – liquid microextraction combined with rapid liquid chromatography, Journal of Chromatography A, 1216: 3038-3043, 2009.
doi: 10.1016/j.chroma.2009.02.021
Huang J, Tsai Y. Chemical Direct electrochemistry and biosensing of hydrogen peroxide of horseradish peroxidase immobilized at multiwalled carbon nanotube/alumina-coated silica nanocomposite modified glassy carbon electrode, Sensors and Actuators B: Chemical, 140: 267-272, 2009.
doi: 10.4172/2155-6210.S9-001
Lenz A, Pattison C, Ma H. Triclosan and triclocarban induce systemic toxic effects in a model organism the nematode Caenorhabditis elegans, Environmental Pollution, 231: 462-470, 2017.
doi: 10.1016/j.envpol.2017.08.036
Li B, Qiu Z, Wan Q, Liu Y, Yang N. β-cyclodextrin functionalized graphene nano platelets for electrochemical determination of triclosan nano platelets for electrochemical determination of triclosan, Physics Status Solidi A, 5: 1-5, 2014.
doi: 10.1002/pssa.201431540
Ozaki N, Nakazato A, Nakashima K, Kindaichi T, Ohashi A. Science of the Total Environment Loading and removal of PAHs, fragrance compounds, triclosan and toxicity by composting process from sewage sludge, Science of The Total Environment, 605: 860-866, 2017.
doi: 10.1016/j.scitotenv.2017.06.165
Rotariu L, Lagarde F, Jaffrezic-renault N, Bala C. Trends in Analytical Chemistry Electrochemical biosensors for fast detection of food contaminants – trends and perspective, Trends in Analytical Chemistry, 79: 80-87, 2016.
doi: 10.1016/j.trac.2015.12.017
Sakahrov I, Vorobiev A, Castillo J. Synthesis of polyelectrolyte complexes of polyaniline and sulfonated polystyrene by palm tree peroxidase, Enzyme and Microbial Technology, 33; 661-667, 2003.
doi: 10.1016/S0141-0229(03)00188-1
Shi Y, Liu X, Zhang J, Shao B. Analysis of triclosan and triclocarban in human nails using isotopic dilution liquid chromatography – tandem mass spectrometry, Journal of Chromatography B, 934: 97-101, 2013.
doi: 10.1016/j.jchromb.2013.07.003
Song S, Song QJ, Chen Z. Online phototransformation – flow injection chemiluminescence determination of triclosan, Analytical and Bioanalytical Chemistry, 387: 2917-2922, 2007.
doi: 10.1007/s00216-007-1130-5
Wang Y. An amperometric biosensor for hydrogen peroxide by adsorption of horseradish peroxidase onto single-walled carbon nanotubes, Colloids and Surfaces B: Biointerfaces, 90: 62-67, 2012.
doi: 10.1016/j.colsurfb.2011.09.045
Wu T, Li T, Liu Z, Guo Y, Dong C. Electrochemical sensor for sensitive detection of triclosan based on graphene/palladium nanoparticles hybrids, Talanta, 164: 556-562, 2017.
doi: 10.1016/j.talanta.2016.12.027
Yang J, Wang P, Zhang X. Electrochemical Sensor for Rapid Detection of Triclosan Using a Multiwall Carbon Nanotube Film, Journal of Agricultural and Food Chemistry, 57; 9403-9407, 2009.
doi: 10.1021/jf902721r