Abstract
In forensic entomology, larval density and competition for food resources among the first cadaver-colonizing insects can affect the accuracy and reliability of the estimated time of death as the minimal postmortem interval (mPMI). This study evaluated the impact of intra- and interspecific food resource competition within and between the forensically relevant fly species Lucilia sericata and Calliphora vicina on life history traits relevant to estimating mPMI. Intraspecific competition assays proceeded with 25, 50, 100, and 300 larvae on 25 g of beef liver. Likewise, interspecific competition experiments proceeded at three food resource levels (5 g, 50 g, and 150 g of beef liver) with 30 larvae (15 of each species). Intraspecific assays revealed a maximum increase of 4.3 °C above the ambient temperature in the larval masses of both species. In both species, larval size decreased with increasing larval density. Larval stage-specific mortality for L. sericata occurred predominantly between instars LII and early LIII, whereas in C. vicina, LI and LII instar larvae experienced the highest mortality. In the interspecies assays, the length and weight of adults of both species differed markedly, with L. sericata outcompeting C. vicina, demonstrating that food was the limiting resource determining adult sizes. This study provides valuable insights to enhance the accuracy of time-of-death estimates in forensic entomology contexts. This study unravels the intricate interplay of food resource availability, competition, and environmental factors in shaping the developmental dynamics of L. sericata and C. vicina at intra- and interspecific levels. A possible inverse relationship between larval density and survival rates may reflect the influence of competition and food availability, underscoring their relevance in understanding larval behavior and improving mPMI estimations. Additionally, the study reveals the advantage of L. sericata when competing under extreme food scarcity conditions, as evidenced by its survival rates and adult sizes. Considering the uniqueness of each forensic case and the interspecific competition for resources and microhabitats, analyzing the temperature of the mixed larval mass and the relative proportions of each species can enhance the accuracy of mPMI determinations.
[1] Catts EP, Goff ML. Forensic entomology in criminal investigations. Annual Reviews of Entomology. 37: 252–272, 1992.
https://doi.org/10.1146/annurev.en.37.010192.001345.
[2] Wells JD, LaMotte LR. Estimating the postmortem interval. In Forensic entomology: the utility of arthropods in legal investigations; Byrd, J.H., Tomberlin, J., Eds.; CRC Press, Taylor & Francis Group: Boca Raton FL, 2020; pp. 213–224 ISBN 978-0-8153-5016-3.
[3] Campobasso CP, Bugelli V, Carfora A, Boriello R., Villet M. Advances in entomotoxicology: weaknesses and strengths. In Forensic entomology: the utility of arthropods in legal investigations; Byrd, J.H., Tomberlin, J.K., Eds.; CRC Press, Taylor & Francis Group:
Boca Raton, FL, 2020; pp. 287–310 ISBN 978-0-8153-5016-3.
[4] Chophi R, Sharma S, Sharma S, Singh R. Forensic entomotoxicology: current concepts, trends and challenges, Journal of Forensic and Legal Medicine, 67: 28–36, 2019.
https://doi.org/10.1016/j.jflm.2019.07.010.
[5] Greenberg B. Flies as forensic indicators, Journal of Medical Entomology, 28: 565–577, 1991.
https://doi:10.1093/jmedent/28.5.565.
[6] Anderson G, VanLaerhoven S. Initial studies on insect succession on carrion in southwestern British Columbia, Journal of Forensic Sciences, 41: 617–625, 1996.
https://doi.org/10.1520/JFS13964J.
[7] Amendt J, Goff ML, Campobasso CP, Grassberger M. Current Concepts in Forensic Entomology; Springer Netherlands: Dordrecht, 2010. ISBN 978-1-4020-9683-9.
[8] Amat E, Bustca A, Jaramillo-Fayad JC. The first case of forensic entomology applied to a roadkill dog carcass in the Colombian Andes, Forensic Science International: Animals and Environments, 1(100013): 2021.
https://doi.org/10.1016/j.fsiae.2021.100013.
[9] Babu BS, Kumar R, El-Sharnouby M, Salah M, Sayed S, Alhazmi A, Hemeg HA, Asdaq SMB, Bala M. Calliphorids as forensic indicator to facilitate PMI estimation: a case study from Chhattisgarh, India, Journal of King Saud University – Science, 34(101709): 2022.
https://doi.org/10.1016/j.jksus.2021.101709.
[10] Krosch MN, Johnston NP, Law K, Wallman JF, Archer MS. Retrospective review of forensic entomology casework in Eastern Australia from 1994 to 2022, Forensic Science International, 367(112355): 2025.
https://doi.org/10.1016/j.forsciint.2024.112355.
[11] Gaedke A, Alves VM, Botteon VW. Entomological data from the first year of the forensic entomology division formalization at Santa Catarina Scientific Police, Revista Brasileira de entomology, 68(e20230104): 2024.
https://doi.org/10.1590/1806-9665-rbent-2023-0104.
[12] Wang M, Chu J, Wang Y, Li F, Liao M, Shi H, Zhang Y, Hu G, Wang J. Forensic entomology application in China: four case reports, Journal of Forensic and Legal Medicine, 63: 40–47, 2019.
https://doi.org/10.1016/j.jflm.2019.03.001.
[13] Pape T, Wolff M, Amat EC. Los califóridos, éstridos, rinofóridos y sarcofágidos (Diptera: Calliphoridae, Oestridae, Rhinophoridae, Sarcophagidae) de Colombia, Biota Colombiana, 5(2): 201-208 2004.
[14] Charabidze D, Bourel B, Gosset D. Larval-Mass effect: characterisation of heat emission by necrophagous blowflies (Diptera: Calliphoridae) larval aggregates, Forensic Science International, 211: 61–66, 2011.
https://doi.org/10.1016/j.forsciint.2011.04.016.
[15] Charabidze D, Hedouin V. Temperature: the weak point of forensic entomology, International Journal of Legal Medicine, 133: 633 639, 2018.
https://doi.org/10.1007/s00414-018-1898-1.
[16] Sharma R, Kumar Garg R, Gaur JR. Various methods for the estimation of the Post Mortem Interval from Calliphoridae: a review, Egyptian Journal of Forensic Sciences, 5: 1-12, 2015.
https://doi.org/10.1016/j.ejfs.2013.04.002.
[17] Carvalho LML, Linhares AX. Seasonality of insect succession and pig carcass decomposition in a natural forest area in Southeastern Brazil, Journal of Forensic Sciences, 46: 604-608, 2001.
http://dx.doi.org/10.1520/JFS15011J.
[18] Bansode S, Morajkar A, Ragade V, More V, Kharat K. Challenges and considerations in forensic entomology: a comprehensive review, Journal of Forensic and Legal Medicine, 110(102831): 2025.
https://doi.org/10.1016/j.jflm.2025.102831.
[19] Rueda LC, Ortega LG, Segura NA, Acero VM, Bello F. Lucilia sericata Strain from Colombia: experimental colonization, life tables and evaluation of two artificial diets of the blowfly Lucilia sericata (Meigen) (Diptera: Calliphoridae), Bogotá, Colombia strain, Biological Research, 43: 197-203, 2010.
http://dx.doi.org/10.4067/S0716-97602010000200008.
[20] Pérez C, Segura NA, Patarroyo MA, Bello FJ. Evaluating the biological cycle and reproductive and population parameters of Calliphora vicina (Diptera: Calliphoridae) reared on three different diets, Journal of Medical Entomology, 53: 1268–1275, 2016.
https://doi:10.1093/jme/tjw114.
[21] Amat E, Vélez MC, Wolff M. Clave ilustrada para la identificación de los géneros y las especies de califóridos (Diptera: Calliphoridae) de Colombia, Caldasia, 30(1): 231-244, 2008.
[22] Rivers D, Dahlem G. Temperature tolerance of necrophagous flies. In The Science of forensic entomology; John Wiley & Sons Ltd: Hoboken, NJ, 2014; pp. 151-175 ISBN 978-1-119-94036-4.
[23] Rivers DB, Dahlem G. Biology of the maggot mass. In The Science of Forensic Entomology; John Wiley & Sons, 2014; pp. 131-150 ISBN 978-1-119-94036-4.
[24] Rivers DB, Thompson C, Brogan R. Physiological trade-offs of forming maggot masses by necrophagous flies on vertebrate carrion, Bulletin of Entomological Research, 101: 599-611, 2011.
https://doi.org/10.1017/S0007485311000241
[25] Gruner SV, Slone DH, Capinera JL, Turco MP. Volume of larvae is the most important single predictor of mass temperatures in the forensically important Calliphorid, Chrysomya megacephala (Diptera: Calliphoridae), Journal of Medical Entomology, 54: 30-34, 2017.
https://doi.org/10.1093/jme/tjw139
[26] Slone DH, Gruner SV. Thermoregulation in larval aggregations of carrion-feeding blow flies (Diptera: Calliphoridae), Journal of Medical Entomology, 44(3):516-523, 2007.
https://doi.org/10.1093/jmedent/44.3.516
[27] Campobasso CP, Di Vella G, Introna F. Factors affecting decomposition and Diptera colonization, Forensic Science International, 120: 18-27, 2001.
https://doi:10.1016/S0379-0738(01)00411-X
[28] Kökdener M, Gündüz NE, Zeybekoğlu Ü, Alakuş K. Effects of larval crowding on some biological characteristics of the blowfly, Calliphora vicina (Robineau-Desvoidy, 1830) (Diptera: Calliphoridae), Turkish Journal of Entomology. 44(1): 101-109, 2020.
http://dx.doi.org/10.16970/entoted.553994
[29] Deneubourg JL, Lioni A, Detrain C. Dynamics of aggregation and emergence of cooperation, The Biological Bulletin, 202: 262-267, 2002.
https://doi.org/10.2307/1543477
[30] Hans KR, Vanlaerhoven SL. Impact of comingled heterospecific assemblages on developmentally based estimates of the Post-Mortem Interval—A study with Lucilia sericata (Meigen), Phormia regina (Meigen) and Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae), Insects, 12(280): 2021.
https://doi.org/10.3390/insects12040280
[31] Martínez-Sánchez A, Smith KE, Rojo S, Marcos-García MA, Wall R. Geographic origin affects larval competitive ability in European populations of the blow Fly, Lucilia sericata, Entomologia Experimentalis et Applicata. 122: 93-98, 2007.
https://doi.org/10.1111/j.1570-7458.2006.00497.x
[32] Cabral A, Avalos S, Ludueña F. Efecto de la competencia por alimento en larvas de Phaenicia sericata Diptera: Calliphoridae, Ecología Austral, 8(1): 37-40, 1998.
[33] Ireland S, Turner B. The effects of larval crowding and food type on the size and development of the Blowfly, Calliphora vomitoria, Forensic Science International, 159: 175-181, 2006.
https://doi.org/10.1016/j.forsciint.2005.07.018
[34] Goodbrod JR, Goff ML. Effects of larval population density on rates of development and interactions between two species of Chrysomya (Diptera: Calliphoridae) in laboratory culture. Journal of Medical Entomology. 27: 338-343, 1990.
https://doi.org/10.1093/jmedent/27.3.338
[35] De Jong GA. Model of Competition for food. I. Frequency-dependent viabilities, The American Naturalist, 110: 1013-1027, 1976.
https://www.jstor.org/stable/2460028
[36] Pinilla Beltran YT, Segura NA, Bello FJ. Synanthropy of Calliphoridae and Sarcophagidae (Diptera) in Bogotá, Colombia, Neotropical Entomology, 41: 237-242, 2012.
https://doi:10.1007/s13744-012-0036-x
[37] Restrepo-Rúa M, Mancipe-Villamarin AP, Segura NA. Atypical succession of insects associated with pig cadavers (Sus scrofa Linnaeus, 1758) in Tunja, Boyacá, Colombia, Forensic Sciences Research, 10: 1-10, 2025.
https://doi.org/10.1093/fsr/owae042
[38] Pinilla T, Acuña Y, Cortes D, Díaz A, Segura A, Bello FJ. Características del ciclo biológico de Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae) sobre dietas diferentes, Revista U.D.C.A Actualidad & Divulgación Científica, 13: 153-161, 2010.
[39] Camacho G. Sucesión de la entomofauna cadavérica y ciclo vital de Calliphora vicina (Diptera: Calliphoridae) como primera especie colonizadora, utilizando cerdo blanco (Sus Scrofa) en Bogotá, Revista Colombiana de Entomología, 31: 189-197, 2005.
[40] Botteon VW, Fernandes FS, Godoy WAC. Induced cannibalism in experimental populations of the forensic indicator Chrysomya putoria Wiedemann (Diptera: Calliphoridae), Neotropical Entomology, 45: 217-220, 2016.
http://doi.org/10.1007/s13744-015-0354-x
[41] Faria LDB, Trinca LA, Godoy WAC. Cannibalistic behavior and functional response in Chrysomya albiceps (Diptera: Calliphoridae), Journal of Insect Behavior, 17: 251-261, 2004.
https://doi.org/10.1023/B:JOIR.0000028574.91062.18
[42] VanLaerhoven S. Modeling species interactions within carrion food webs. In Carrion ecology, evolution, and their applications; Benbow ME, Tomberlin JK, Tarone AM, Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, 2015; pp. 231-246 ISBN 978-1-138-89384-9.
[43] Faria LDB, Orsi L, Trinca LA, Godoy WAC. Larval predation by Chrysomya albiceps on Cochliomyia macellaria, Chrysomya megacephala and Chrysomya putoria, Entomologia Experimentalis et Applicata, 90: 149-155, 1999.
https://doi.org/10.1046/j.1570-7458.1999.00433.x
[44] Faria LDB, Godoy WAC, Trinca LA. Dynamics of handling time and functional response by larvae of Chrysomya albiceps (Dipt., Calliphoridae) on different prey species, Journal of Applied Entomology, 128: 432-436, 2004.
https://doi.org/10.1111/j.1439-0418.2004.00868.x
[45] Shiao SF, Yeh TC. Larval competition of Chrysomya megacephala and Chrysomya rufifacies (Diptera: Calliphoridae): behavior and ecological studies of two blow fly species of forensic significance, Journal of medical entomology, 45(4): 785-799, 2008.
https://doi.org/10.1093/jmedent/45.4.785
[46] Lira LA, Barros-Cordeiro KB, Figueiredo B, Galvão MF, Frizzas MR. The carrion beetle Oxelytrum discicolle (Coleoptera: Silphidae) and the estimative of the minimum Post-Mortem Interval in a forensic case in Brasília, Brazil, Revista Brasileira de Entomologia, 64: e201992, 2020.
https://doi.org/10.1590/1806-9665-rbent-2019-92
[47] Lira LA, Macedo MP, Pujol-Luz JR, Vasconcelos SD. Diel activity and effect of carcass decomposition on the attractiveness to the forensically important species Oxelytrum discicolle (Coleoptera: Silphidae)†, Journal of Forensic Sciences, 64: 799-804, 2019.
https://doi.org/10.1111/1556-4029.13954
[48] Komo L, Hedouin V, Charabidze D. Benefits of heterospecific aggregation on necromass: influence of temperature, group density, and composition on fitness-related traits, Insect Science, 28: 144-152, 2021.
https://doi.org/10.1111/1744-7917.12766
[49] Segura NA, Usaquén W, Sánchez MC, Chuaire L, Bello F. Succession pattern of cadaverous entomofauna in a semi-rural area of Bogotá, Colombia, Forensic Science International, 187: 66-72, 2009.
https://doi.org/10.1016/j.forsciint.2009.02.018
[50] Sánchez AFS, Fagua G. Análisis sucesional de Calliphoridae (Diptera) en cerdo doméstico en pastizales (Cogua, Cundinamarca, Colombia), Revista Colombiana de Entomología, 40(2): 190-197, 2014.
[51] Martinez E, Duque P, Wolff M. Succession pattern of carrion-feeding insects in Paramo, Colombia, Forensic Science International, 166: 182-189, 2007.
https://doi.org/10.1016/j.forsciint.2006.05.027
[52] Wolff MI, Kosmann C. Families Calliphoridae and Mesembrinellidae, Zootaxa, 4122: 856-875, 2016.
http://dx.doi.org/10.11646/zootaxa.4122.1.72
[53] Rodríguez LA, Amat E, Durango Y, Gómez LM. Colección entomológica del Tecnológico de Antioquia (CETdeA) - Calliphoridae (Diptera), v1.11, Tecnológico de Antioquia, Dataset/Occurrence, 2023.
https://doi.org/10.15472/o1akfx
[54] Ivorra T, Martínez-Sánchez A, Rojo S. Coexistence and intraguild competition of Chrysomya albiceps and Lucilia sericata larvae: case reports and experimental studies applied to forensic entomology, Acta Tropica, 226: 2022.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Mateo Restrepo-Rúa , Sara Sofia Rodriguez-Plata, Ingrid Dayana Jiménez-Camacho, Angela Patricia Mancipe-Villamarin, NIDYA ALEXANDRA SEGURA GUERRERO