Computational exploration of nigerian bioactive compounds as potential inhibitors of septic shock
PDF

Keywords

ADMET
Bioactive compounds
DFT
Molecular docking
PASS

How to Cite

Computational exploration of nigerian bioactive compounds as potential inhibitors of septic shock. (2025). Universitas Scientiarum, 30, 224-246. https://doi.org/10.11144/
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

Septic shock is a fatal medical condition characterized by severe hypotension or elevated lactate levels as a consequence of sepsis. Septic shock occurs as a result of pathogenic bacterial and viral infections. In this study, twenty-eight ligands from natural plant sources were computationally screened for their ability to suppress septic shock via interaction with the protein Catechol-O-Methyltransferase (COMT) (PBD: 4XUC), as revealed by Molecular Docking, PASS, ADMET, and DFT analyses. The molecular docking results showed that the assessed ligands Capsaicine (L5) and Gingerenone A (L6) had binding affinities of -7.9 kcal/mol and -8.1 kcal/mol with an inhibition constant of 1.60 µM and 1.14 µM respectively, while the standard drugs dobutamine and dopamine had had binding affinities of -7.0 kcal/mol and -5.8 kcal/mol and inhibition constants of 7.35 µM and 55.77 µM. PASS analysis revealed that L5 and L6 had higher active probability values of 0.357 and 0.346, and the ADMET analysis ranked L5 and L6 as the best ligands. Finally, the DFT assessment showed that L5 and L6 had a band gap of 5.58 and 4.20. All the analyses showed that the two compounds , L5 and L6, had an improved binding affinity with the receptor over that of the two assessed approved drugs, dobutamine and dopamine.

PDF

[1] Akinade A. Assessment of the Effect of Ethylacetate Extract of Plumbago zeylanica on Mitochondria Permeability Transition Pore, European Journal of Biology, 8(1):54–70, 2023.

https://doi.org/10.47672/ejb.1699

[2] Nwanze P. I., Nwaru L. M., Oranusi S., Dimkpa U., Okwu M. U., Babatunde B. B., Anake A., Jatto W., Asagwara C. E. Urinary Tract Infection in Okada Village: Prevalence and Antimicrobial Susceptibility Pattern, Scientific Research and Essays, 2(4):112–116, 2007.

[3] Shopsin B., Kreiswirth B. Molecular epidemiology of methicillin resistant Staphylococcus aureus, Emerging Infectious Diseases, 7(2):323–326, 2001.

https://doi.org/10.3201/eid0702.010236

[4] Funk D. J., Parrillo J. E., Kumar A. Sepsis and Septic Shock: A History, Critical Care Clinics, 25:83–101, 2009.

https://doi.org/10.1016/j.ccc.2008.12.003

[5] Rodríguez A., Martín Loeches I., Yébenes J. C. New definition of sepsis and septic shock: What does it give us? Medicina Intensiva, 41:38–40, 2017.

https://doi.org/10.1016/j.medin.2016.03.008

[6] Gorecki G., Cochior D., Moldovan C., Rusu E. Molecular mechanisms in septic shock, Experimental and Therapeutic Medicine, 22:1161, 2021.

https://doi.org/10.3892/etm.2021.10595

[7] Simon T. P., Thiele C., Schuerholz T., Fries M., Stadermann F., Haase G., Amann K. U., Marx G. Molecular weight and molar substitution are more important in HES-induced renal impairment than concentration after hemorrhagic and septic shock, Minerva Anestesiologica Journal, 81(6):608–618, 2015.

[8] Peng Y., Zhang W., Xu Y., Li L., Yu W., Zeng J., Ming S., Fang Z., Wang Z., Gao X. Performance of SOFA, qSOFA and SIRS to predict septic shock after percutaneous nephrolithotomy, World Journal of Urology, 39(2):501–510, 2021.

https://doi.org/10.1007/s00345-020-03183-2

[9] Lee W. L. Reply to Mehmood: Adrenomedullin: A Double-edged Sword in Septic Shock and Heart Failure Therapeutics? American Journal of Respiratory and Critical Care Medicine, 201(9):1165, 2020.

https://doi.org/10.1164/rccm.202001-0072LE

[10] Izumida T., Imamura T. The Impact of Management Using Fluid Response Evaluation on Renal and Respiratory Failure in Septic Shock, Chest, 158(6):2706–2707, 2020.

https://doi.org/10.1016/j.chest.2020.06.088

[11] Garrido P., Rovira C., Cueto P., Fort-Gallifa I., Hernández-Aguilera A., Cabré N., Luciano-Mateo F., García-Heredia A., Camps J., Joven J., Garcia E., Vallverdú I. Effect of continuous renal-replacement therapy on paraoxonase-1-related variables in patients with acute renal failure caused by septic shock, Clinical Biochemistry, 61:1–6, 2018.

https://doi.org/10.1016/j.clinbiochem.2018.08.010

[12] Bakker J., Kattan E., Annane D., Castro R., Cecconi M., De Backer D., Dubin A., Evans I., Gong M. N., Hamzaoui O., Ince C., Levy B., Monnet X., Ospina Tascon G. A., Ostermann M., Pinsky M. R., Russell J. A., Saugel B., Scheeren T. W. I., Hernandez G. Current practice and evolving concepts in septic shock resuscitation, Intensive Care Medicine, 48(2):148–163, 2022.

https://doi.org/10.1007/s00134-021-06595-9

[13] Singh M., Hussain M. S., Tewari D., Kumar B., Mansoor S., Ganesh N. Antimicrobial Potential of Ethanolic Extracts of Avacado, Allspice, Tejpatta, and Dalchini Against Different Bacterial Strains, World Journal of Pharmaceutical and Life Science, 6(9):192–200, 2020.

[14] Hussain M. S., Singh M., Kumar B., Tewari D., Mansoor S., Ganesh N. Antimicrobial Activity in Ethanolic Extracts of Bixa orellana L., Simarouba glauca DC., and Ocimum tenuiflorum L. Collected from JNCH Herbal Garden, World Journal of Pharmaceutical Research, 9(4):650–663, 2020.

[15] Luo S., Gou L., Liu S., Cao X. Efficacy and safety of Shenfu injection in the treatment of sepsis: a protocol for systematic review and meta-analysis, Medicine, 100(37):e27196, 2021.

https://doi.org/10.1097/md.0000000000027196.e27196

[16] Huang P., Guo Y., Feng S., Zhao G., Li B., Liu Q. Efficacy and safety of Shenfu injection for septic shock: A systematic review and meta-analysis of randomized controlled trials, The American Journal of Emergency Medicine, 37(12):2197–2204, 2019.

https://doi.org/10.1016/j.ajem.2019.03.032

[17] Kim E. Y., Park C., Lee G., Jeong S., Song J., Lee D. H. Epidemiological characteristics of varicella outbreaks in the Republic of Korea, 2016–2020, Osong Public Health and Research Perspectives, 13(2):133–141, 2022.

https://doi.org/10.24171/j.phrp.2022.0087

[18] Yébenes J. C., Ruiz-Rodríguez J. C., Ferrer R., Cleries M., Bosch A., Lorencio C., Rodríguez A., Nuvials X., Martin-Loeches I., Artigas A., SOCMIC. Epidemiology of sepsis in Catalonia: analysis of incidence and outcomes in a European setting, Annals of Intensive Care, 19(7):2017.

https://doi.org/10.1186/s13613-017-0241-1

[19] Kumar S., Bhardwaj V. K., Singh R., Das P., Purohit R. Identification of acridinedione scaffolds as potential inhibitor of DENV-2 C protein: An in silico strategy to combat dengue, Journal of Cellular Biochemistry, 123(5):935–946, 2022.

https://doi.org/10.1002/jcb.30237

[20] Singh V. K., Bhardwaj P., Das P., Purohit R. Identification of 11B-HSD1 inhibitors through enhanced sampling methods, Chemical Communications, 58(32):5005–5008, 2022.

https://doi.org/10.1039/D1CC06894F

[21] Bhardwaj V. K., Oakley A., Purohit R. Mechanistic behavior and subtle key events during DNA clamp opening and closing in T4 bacteriophage, International Journal of Biological Macromolecules, 208:11–19, 2022.

https://doi.org/10.1016/j.ijbiomac.2022.03.021

[22] Vijayakumar V. R., Rajendran P. J., Poornimaa M., Ramanathan K., Saha T., Das S., Dharumadurai D. Structural geometry, electronic properties and pre-clinical evaluation of antibacterial compounds from lichen-associated Streptomyces mobaraensis DRM1 and Nocardiopsis synnemataformans DRM2, Journal of Molecular Structure, 1312:138561, 2024.

https://doi.org/10.1016/j.molstruc.2024.138561

[23] Yuan H., Liu Y., Huang K., Hao H., Xue Y. T. Therapeutic mechanism and key active ingredients of Shenfu injection in sepsis: a network pharmacology and molecular docking approach, Evidence-Based Complementary and Alternative Medicine, 2022(1):9686149, 2022.

https://doi.org/10.1155/2022/9686149

[24] Becke A. D. Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, 98:5648–565, 1993.

https://doi.org/10.1063/1.464913

[25] Lee C., Yang W., Parr R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37:785–789, 1988.

https://doi.org/10.1103/PhysRevB.37.785

[26] Jacquemin D., Perpete E. A., Ciofini I., Adamo C. Accurate simulation of optical properties in dyes, Accounts of Chemical Research, 42:326–334, 2008.

https://doi.org/10.1021/ar800163d

[27] Allison T., Wolkenberg S., Sanders J. M., Soisson S. M. Synthesis and evaluation of heterocyclic catechol mimics as inhibitors of catechol-O-methyltransferase (COMT): Structure with Cmpd18 (1-(biphenyl-3-yl)-3-hydroxypyridin-4(1H)-one), 2015.

https://doi.org/10.1021/ml500502d

[28] Tian W., Chen C., Lei X., Zhao J., Liang J. CASTp 3.0: Computed atlas of surface topography of proteins, Nucleic Acids Research, 46(W1):W363–W367, 2018.

https://doi.org/10.1093/nar/gky473

[29] Andreis D. T., Singer M. Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum, Intensive Care Medicine, 42(9):1387–1397, 2016.

https://doi.org/10.1007/s00134-016-4249-z

[30] Zhu B. Catechol-O-Methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics: importance in pathophysiology and pathogenesis, Current Drug Metabolism, 3(3):321–349, 2002.

https://doi.org/10.2174/1389200023337586

[31] Smith B. L., Dunham J. E., Sweeney B. M., Dearing C., Shepherd R. H., Bardgett M. E. Biopsychology Lab: COMT Genotype Associations with Vagal Tone and Frontal Alpha Asymmetry, Journal of Undergraduate Neuroscience Education, 23(2):A95, 2025.

https://doi.org/10.59390/SMML6995

[32] Haase-Fielitz A., Haase M., Bellomo R., Lambert G., Matalanis G., Story D., Dragun D. Decreased catecholamine degradation associates with shock and kidney injury after cardiac surgery, Journal of the American Society of Nephrology, 20(6):1393–1403, 2009.

https://doi.org/10.1681/ASN.2008080915

[33] Belfiore J., Taddei R., Biancofiore G. Catecholamines in sepsis: pharmacological insights and clinical applications—a narrative review, Journal of Anesthesia, Analgesia and Critical Care, 5(1):17, 2025.

https://doi.org/10.1186/s44158-025-00241-2

[34] Gopalakrishnan K., Saravanan S., Sarani R., Sekar K. RPMS: Ramachandran plot for multiple structures, Applied Crystallography, 41(1):219–221, 2008.

[35] Morris A. L., MacArthur M. W., Hutchinson E. G., Thornton J. M. Stereochemical quality of protein structure coordinates, Proteins, 12:345–364, 1992.

[36] Oyebamiji A. K. et al. Predicting the biological activity of selected phytochemicals in Alsophila spinulosa leaves against 4-aminobutyrate-aminotransferase: A potential antiepilepsy agents, Ecletica Quimica, 49:1492, 2024.

[37] Marwaha A., Goel R., Mahajan M. PASS-predicted design, synthesis and biological evaluation of cyclic nitrones as nootropics, Bioorganic & Medicinal Chemistry Letters, 17:5251–5255, 2007.

https://doi.org/10.1016/j.bmcl.2007.06.071

[38] Filimonov D. A., Poroikov V. Probabilistic Approaches in Activity Prediction, 2008.

https://doi.org/10.1039/9781847558879-00182

[39] Poroikov V., Filimonov D. A., Borodina Y., Lagunin A., Kos A. Robustness of biological activity spectra predicted by computer program PASS for noncongeneric sets of chemical compounds, Journal of Chemical Information and Computer Sciences, 40:1349–1355, 2000.

https://doi.org/10.1021/ci000383k

[40] Lagunin A., Stepanchikova A., Filimonov D., Poroikov V. PASS: Prediction of activity spectra for biologically active substances, Bioinformatics, 16(8):747–748, 2000.

[41] Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Advanced Drug Delivery Reviews, 23(1–3):3–25, 2001.

https://doi.org/10.1016/S0169-409X(96)00423-1

[42] Lipinski C. A. Lead-and drug-like compounds: the rule-of-five revolution, Drug Discovery Today: Technologies, 1(4):337–341, 2004.

https://doi.org/10.5772/52642

[43] Veszelka S., Tóth A., Walter F. R., Tóth A. E., Gróf I., Mészáros M., Bocsik A., Hellinger É., Vastag M., Rákhely G. Comparison of a rat primary cell-based blood–brain barrier model with epithelial and brain endothelial cell lines: Gene expression and drug transport, Frontiers in Molecular Neuroscience, 11:166, 2018.

https://doi.org/10.3389/fnmol.2018.00166

[44] Frenk J., Gomez-Dantés O. The triple burden disease in developing nations, Harvard International Review, 10, 2011.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Yemisi Elizabeth Asibor, Dayo Felix Latona, Banjo Semire