Resumen
Sacha inchi (Plukenetia volubilis L.) is an oilseed plant that yields a highly nutritious oil. However, its husks and seed shells are under-utilized byproducts. In this study, ethanolic extracts of sacha inchi husks (SI-husk) and seed shells (SI-shell) were obtained using ultrasound-assisted extraction, and the influence of temperature and solvent-to-solid ratio on the yields was evaluated. The total phenolic content, phenolic profile, antioxidant activity, and antimicrobial activity against Gram-positive and Gram-negative bacteria were investigated. Under the selected extraction conditions for SI-husk (60°C, 1:8 s/s, 280 W, 120 min) and SI-shell (60°C, 1:3 s/s, 280 W, 120 min), the total phenolic content was found to be 80.18 ± 0.32 and 50.94 ± 0.48 mg GAE/g, respectively. Cyanidin, naringenin, and kaempferol were principally found in SI-husk (79.4%) and vanillic acid in SI-shell (79.9%). Both extracts exhibited antioxidant activity, with ORAC values of 360.36 ± 0.21 and 228.11 ± 0.14 µmol TE/g, respectively. SI-husk (1 mg) exhibited antibacterial activity against Staphylococcus aureus, with an inhibition zone of 10.5 ± 1.8 mm. Our results provide new insights into sacha inchi byproducts as sources of bioactive compounds with potential health benefits.
Wang S, Zhu F, Kakuda Y. Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses, Food Chemistry, 265: 316–328, 2018.
doi: 10.1016/j.foodchem.2018.05.055
Chirinos R, Necochea O, Pedreschi R, Campos D. Sacha inchi (Plukenetia volubilis L.) shell: An alternative source of phenolic compounds and antioxidants, International Journal of Food Science and Technology, 51(4): 986–993, 2016.
doi: 10.1111/ijfs.13049
Sanchez-Reinoso Z, Mora-Adames WI, Fuenmayor CA, Darghan-Contreras AE, Gardana C, Gutiérrez LF. Microwave-assisted extraction of phenolic compounds from Sacha Inchi shell: Optimization, physicochemical properties and evaluation of their antioxidant activity, Chemical Engineering and Processing: Process Intensification, 153: 107922, 2020.
doi: 10.1016/j.cep.2020.107922
Sainakham M, Mungmai L. In vitro anti-oxidative activity and tyrosinase inhibition of inca peanut (Plukenetia volubilis L.) shell extracts from different preparation methods, Thai Journal of Science and Technology (TJST), 9(3): 407–417, 2020.
doi: 10.14456/tjst.2020.30
Li P, Cai X, Xiao N, Ma X, Zeng L, Zhang LH, Xie L, Du B. Sacha inchi (Plukenetia volubilis L.) shell extract alleviates hypertension in association with the regulation of gut microbiota, Food & Function, 11(9): 8051–8067, 2020.
doi: 10.1039/D0FO01770A
Prasongsub W, Pimsan N, Buranapattarachote C, Punturee K. Anti-HMG-CoA reductase and antioxidant activities of Sacha inchi (Plukenetia volubilis L.) nutshell extract, Journal of Associated Medical Sciences, 54(3): 18–26, 2021.
doi: 10.14456/jams.2021.19
Thuanthong A, Klomklao S, Panyo J, Zhang Y. In-Vitro Screenings for Biological and Antioxidant Activities of Aqueous Extract from Sacha Inchi (Plukenetia volubilis L.) Husks, Trends in Sciences, 20(11): 6815, 2023.
doi: 10.48048/tis.2023.6815
Kittibunchakul S, Hudthagosol C, Sanporkha P, Sapwarobol S, Temviriyanukul P, Suttisansanee U. Evaluation of Sacha Inchi (Plukenetia volubilis L.) By-Products as Valuable and Sustainable Sources of Health Benefits, Horticulturae, 8(4): 344, 2022.
doi: 10.3390/horticulturae8040344
Gonzalez-Aspajo G, Belkhelfa H, Haddioui-Hbabi L, Bourdy G, Deharo E. Sacha Inchi Oil (Plukenetia volubilis L.), effect on adherence of Staphylococus aureus to human skin explant and keratinocytes in vitro, Journal of Ethnopharmacology, 171: 330–334, 2015.
doi: 10.1016/j.jep.2015.06.009
Wintachai P, Voravuthikunchai SP. Characterization of Novel Lytic Myoviridae Phage Infecting Multidrug-Resistant Acinetobacter baumannii and Synergistic Antimicrobial Efficacy between Phage and Sacha Inchi Oil, Pharmaceuticals, 15(3): 291, 2022.
doi: 10.3390/ph15030291
Ampofo J, Ngadi M. Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry, Ultrasonics Sonochemistry, 84: 105955, 2022.
doi: 10.1016/j.ultsonch.2022.105955
Dastmalchi K, Damien-Dorman HJ, Koşar M, Hiltunen R. Chemical composition and in vitro antioxidant evaluation of a water-soluble Moldavian balm (Dracocephalum moldavica L.) extract, LWT, 40(2): 239–248, 2007.
doi: 10.1016/j.lwt.2005.09.019
Ou B, Hampsch-Woodill M, Prior RL. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe, Journal of Agricultural and Food Chemistry, 49(10): 4619–4626, 2001.
doi: 10.1021/jf010586o
Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK. Development and Validation of Oxygen Radical Absorbance Capacity Assay for Lipophilic Antioxidants Using Randomly Methylated B-Cyclodextrin as the Solubility Enhancer, Journal of Agricultural and Food Chemistry, 50(7): 1815–1821, 2002.
doi: 10.1021/jf0113732
CLSI. Performance standards for antimicrobial disk susceptibility tests: Approved standard, Clinical and Laboratory Standards Institute, 2012.
https://clsi.org/media/1631/m02a12_sample.pdf
Zahari NAAR, Chong GH, Abdullah LC, Chua BL. Ultrasonic-Assisted Extraction (UAE) Process on Thymol Concentration from Plectranthus Amboinicus Leaves: Kinetic Modeling and Optimization, Processes, 8(3): 322, 2020.
doi: 10.3390/pr8030322
Hernández-Rodríguez P, Baquero LP, Larrota HR. Flavonoids: Potential Therapeutic Agents by Their Antioxidant Capacity, Bioactive Compounds: Health Benefits and Potential Applications; p. 265–288, 2018.
doi: 10.1016/B978-0-12-814774-0.00014-1
Arias A, Feijoo G, Moreira MT. Exploring the potential of antioxidants from fruits and vegetables and strategies for their recovery, Innovative Food Science and Emerging Technologies, 77: 102974, 2022.
doi: 10.1016/j.ifset.2022.102974
Santos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B. Antioxidant Compounds and Their Antioxidant Mechanism, Antioxidants. IntechOpen, 2019.
doi:10.5772/intechopen.85270
Rakha A, Umar N, Rabail R, Butt MS, Kieliszek M, Hassoun A, Aadil RM. Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review, Biomedicine & Pharmacotherapy, 156: 113945, 2022.
doi: 10.1016/j.biopha.2022.113945
Zeb A. Concept, mechanism, and applications of phenolic antioxidants in foods, Journal of Food Biochemistry, 44(9): 1–22, 2020.
doi: 10.1111/jfbc.13394
Khan A, Heng W, Wang Y, Qiu J, Wei X, Peng S, Saleem S, Khan M, Ali SS, Wei DQ. In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV -2 main protease
(3CLpro), Phytotherapy Research, 35(6): 2841–2845, 2021.
doi: 10.1002/ptr.6998
Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh-Attar MJ. Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19, Phytotherapy Research, 34(12): 3137–3147, 2020.
doi: 10.1002/ptr.6781
Nascimento AKL, Melo-Silveira RF, Dantas-Santos N, Fernandes JM, Zucolotto SM, Rocha HAO, Scortecci KC. Antioxidant and Antiproliferative Activities of Leaf Extracts from Plukenetia volubilis Linneo (Euphorbiaceae), Evidence-Based Complementary and Alternative Medicine, 2013: 950272, 2013.
doi: 10.1155/2013/950272
Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives, Microorganisms, 9(10): 2041, 2021.
doi: 10.3390/microorganisms9102041
Adekola HA, Adeleye AO, Adesetan TO, Folorunso JB, Odeyemi FA. Antibacterial Activity of Vanillic Acid against Staphylococcus aureus, Salmonella typhi, and Proteus mirabilis, Microbes, Infection & Chemotherapy, 2(12): e1458, 2022.
doi: 10.54034/mic.e1548
Resende FA, Nogueira LG, Bauab TM, Vilegas W, Varanda EA. Antibacterial potential of flavonoids with different hydroxylation patterns, Eclética Química Journal, 40(1): 173, 2015.
doi: 10.26850/1678-4618eqj.v40.1.2015.p173-179
Veiko AG, Olchowik-Grabarek E, Sekowski S, Roszkowska A, Lapshina EA, Dobrzynska I, Zamaraeva M, Zavodnik IB. Antimicrobial Activity of Quercetin, Naringenin and Catechin: Flavonoids Inhibit Staphylococcus aureus-Induced Hemolysis and Modify Membranes of Bacteria and Erythrocytes, Molecules, 28(3): 1252, 2023.
doi: 10.3390/molecules28031252
Lin RD, Chin YP, Hou WC, Lee MH. The Effects of Antibiotics Combined with Natural Polyphenols against Clinical Methicillin-Resistant Staphylococcus aureus (MRSA), Planta Medica, 74(8): 840–846, 2008.
doi: 10.1055/s-2008-1074559
Duda-Madej A, Stecko J, Sobieraj J, Szymańska N, Kozłowska J. Naringenin and Its Derivatives—Health-Promoting Phytobiotic against Resistant Bacteria and Fungi in Humans, Antibiotics, 11(11): 1628, 2022.
doi: 10.3390/antibiotics11111628
Ming D,Wang D, Cao F, Xiang H, Mu D, Cao J, Li B, Zhong L, Dong X, Zhong X,Wang L,Wang T. Kaempferol Inhibits the Primary Attachment Phase of Biofilm Formation in Staphylococcus aureus, Frontiers in Microbiology, 8: 2263, 2017.
doi: 10.3389/fmicb.2017.02263
Alves MJ, Ferreira ICFR, Froufe HJC, Abreu RMV, Martins A, Pintado M. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies, Journal of Applied Microbiology, 115(2): 346–357, 2013.
doi: 10.1111/jam.12196
Morimoto Y, Baba T, Sasaki T, Hiramatsu K. Apigenin as an anti-quinolone-resistance antibiotic, International Journal of Antimicrobial Agents, 46(6): 666–673, 2015.
doi: 10.1016/j.ijantimicag.2015.09.006

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2024 Nicole Valeria Polanía Cuellar, Indira Paola Hern´ández Peñaranda, Deicy Villalba Rey, Katherin Natalia Acuña Rodríguez, Franci Nathalie Gómez Jaimes