Abstract
Forecasting electricity prices in liberalized, deregulated markets has always been considered a difficult task, due to the number of factors that govern prices and to their complexity. This article predicts the average monthly prices for Colombian electricity market contracts by using a novel neural network known as the support vector machine. Forecasts obtained using a multilayer perceptron are compared to forecasts obtained using an ARIMA model. The results show that the support vector machine better captures the intrinsic dynamics of the time series and is able to make more precise forecasts considering a 12-month horizon.
Belousov, A. I.; Verzakov, S. A. and von Frese, J. (2002). A flexible classification approach with optimal generalisation performance: support vector machines. Chemometrics and Intelligent Laboratory Systems, 64, 15-25.
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121-167.
Chen, R. and Tsay, R. (1993). Functional-coefficient autoregressive models. Journal of the American Statistical Association, 88, 298-308.
Franses, P. H. and van Djck, D. (2000). Non-linear time series models in empirical finance. Cambridge: Cambridge University Press.
Gunn, S. R. (1997). Support vector machines for classification and regression (Technical report). Southampton, UK: Image Speech and Intelligent Systems Research Group, University of Southampton.
Kaastra, I. and Boyd, M. (1996). Designing a neural network for forecasting financial and economic series. Neurocomputing, 10, 215-236.
Masters, T. (1993). Practical neural network recipes in C++. New York: Academic Press.
Neural, novel and hybrid algorithms for time series prediction. (1995). New York: John Wiley and Sons.
Mukherjee, S.; Osuna, E. and Girosi, F. (1997). Nonlinear prediction of chaotic time series using support vector machines. Documento presentado en IEEE NNSP'97, Amelia Island, FL, Estados Unidos.
Muller, K. R.; Smola, A.; Ratsch, G.; Scholkopf, B.; Kohlmorgen, J. and Vapnik, V. N. (1997). Predicting time series with support vector machines. En: W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud (Eds.), Proceedings of ICANN'97, Springer LNCS 1327, Berlin, 999-1004.
Osowski, S. and Garanty, K. (2007). Forecasting of the daily meteorological pollution using wavelets and support vector machine. Engineering Applications of Artificial Intelligence, 20, 745-755.
Platt, L. (1998). Fast training of SVM using sequential optimization. En: B. Scholkopf, B. Burges y A. Smola (Eds.), Advances in Kernel methods-support vector learning (pp. 185-208). Cambridge: MIT Press.
Scholkopf, B. and Smola, A. (2002). Learning with Kernels. Cambridge, MA: MIT Press.
Tay, F. E. H. and Cao, L. (2001). Application of support vector machines in financial time series forecasting. Omega, 29, 309-317.
Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89, 208-218.
Lin, C. and Granger, C. (1993). Power of the neural network linearity test. Journal of Time Series Analysis, 14, 209-220.
Thissen, U.; van Brakel, R.; de Weijer, A. P.; Melssen, W. J. and Buydens, L. M. C. (2003). Using vector support machines for time series prediction. Chemometrics and Intelligent Laboratory Systems, 69, 35-49.
Tong, G. (1978). On a threshold model. En: C. Chen (Ed.), Pattern recognition and signal processing. Amsterdam: Sijhoff & Noordhoff.
Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.
Statistical learning theory. (1998). New York: Wiley.
Vapnik, V. N.; Golowich, S. E. and Smola, A. J. (1996). Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 9, 281-287.
Velásquez, J. D.; Dyner, I. y Souza, R. C. (2007). ¿Por qué es tan difícil obtener buenos pronósticos de los precios de la electricidad en mercados competitivos? Cuadernos de Administración, 20 (34), 259-282.
Zhang, G.; Patuwo, B. and Hu, M. (1998). Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 14, 35-62.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.