Published Aug 9, 2018


Google Scholar
Search GoogleScholar

Wladimir Antonio Chavez-Yavara, MSc

Betzabé Andrea Torres-Paiva, PhD

Carlos Enrique Zambra-Sazo, PhD



Objectives: Report the exploratory study results of the performance of a conventional solar still prototype using seawater and brackish water (river and well) at three locations in northern Chile at different geographical heights. Materials and methods: A solar still with an effective distillation area of 0.54 m2 was used. Three tests were performed with seawater, 1 with river water and 1 with well water.  The temperatures and environmental parameters were measured every 10 minutes for 36 continuous hours. The efficiency was evaluated in terms of seawater and the capacity to remove natural contaminants from brackish water. Results and discussion: The productivity in the three selected areas was 3 and 4 L/m2 for seawater and brackish water, respectively. The removal of boron and arsenic complies with the regulations of the country. Conclusion: The results obtained are of exploratory character for the zones, where the geographic height and the total dissolved solids are factors that determine the performance of a passive solar still, which is higher when water is used with low concentrations of solids.


Conventional solar still, Arsenic removal, Boron removalDestilador solar convencional, Remoción de arsénico, Remoción de boro

[1] Ayala, Cabrera y Asociados Ltda., “Análisis redes de vigilancia calidad aguas terrestres estadística hidroquímica nacional. Etapa I. Región Metropolitana,” Ministerio de Obras Públicas, Dirección Nacional de Aguas (DGA), Santiago de Chile, 1994. [Online]. Available:
[2] V. Herrera, C. Carrasco, P. Sandoval and C. Cortés, “Transferencia de arsénico en el sistema aguasuelo- maíz de zea mays l. cultivados en la quebrada de Camiña, norte de Chile,” Rev. Soc. Quím. Perú, vol 83, no. 1, 2017. [Online]. Available:
[3] CNE, PNUD, UTFSM. (2008). Irradiancia Solar en Territorios de la República de Chile, Santiago de Chile, 2008. [Online]. Available:
[4] Pr.K. Abdenacer, S. Nafila, “Impact of temperature difference (water-solar collector) on solar still global efficiency,” Desalination, vol. 209, no. 1-3, pp. 298-305, 2007. [Online]. Available:
[5] J.G. Hirschman, “A solar energy pilot plant for northern Chile,” Solar Energy, vol. 5, no.2, pp. 37-43, Apr-Jun 1961. [Online]. Available:
[6] A. K. Kaviti, A. Yadav and A. Shukla, “Inclined solar still designs: A review,” Renew. Sustain. Energy Rev., Vol. 54, pp. 429-451, 2016. [Online]. Available:
[7] D. W. Rufuss, S. Iniyan, L. Suganthi and P.A. Davies, “Solar stills: A comprehensive review of designs, performance and material advances,” Renew. Sustain. Energy Rev., Vol. 63, pp. 464-496, 2016. [Online]. Available:
[8] K. Kalidasa Murugavela, Kn.K.S.K. Chockalingam and K. Srithar, “Progresses in improving the effectiveness of the single basin passive solar still,” Desalination, Vol. 220, No. 1-3, pp. 677-686, Mar 2008. [Online]. Available:
[9] Z. M. Omara, A. E. Kabeel and M. M. Younes, “Enhancing the stepped solar still performance using internal reflectors,” Desalination, Vol. 314, No. 2, pp. 67–72, Apr 2013. [Online]. Available:
[10] C-D. Park, B-J. Lim, K-Y. Chung, S-S. Lee and Y-M. Kim, “Experimental evaluation of hybrid solar still using waste heat,” Desalination, Vol. 379, No. 1, pp. 1-9, 2006. [Online]. Available:
[11] S. Abdallaha, O. Badranb and M. Abu-Khader, “Performance evaluation of a modified design of a single slope solar still,” Desalination, Vol. 219, No. 1–3, pp. 222-230, Jan 2008. [Online]. Available:
[12] K.V. Kumar and R.K. Bai, “Performance study on solar still with enhanced condensation,” Desalination, Vol. 230, No. 1-3, pp. 51-61, Sep 2008. [Online]. Available:
[13] R. Samuel Hansen and K. Kalidasa Murugavel, “Enhancement of integrated solar still using different new absorber configurations: An experimental approach,” Desalination, Vol. 422, pp. 59-67, Nov 2017. [Online]. Available:
[14] O. Ansari, M. Asbik, A. Bah, A. Arbaoui and A. Khmou, “Desalination of the brackish water using a passive solar still with a heat energy storage system,” Desalination, Vol. 324, pp. 10-20, Sep 2013. [Online]. Available:
[15] M. Abu-Arabi and Y. Zurigat, “Year-round comparative study of three types of solar desalination units,” Desalination, Vol. 172, No. 2, pp. 137-143, Feb 2005. [Online]. Available:
[16] T. Abderachid and K. Abdenacer, “Effect of orientation on the performance of a symmetric solar still with a double effect solar still (comparison study),” Desalination, Vol. 329, pp. 68–77, Nov 2013. [Online] Available:
[17] B. Bouchekima, “A small solar desalination plant for the production of drinking water in remote arid areas of southern Algeria,” Desalination, Vol. 159, No. 2, pp. 197-204, Oct 2003. [Online]. Available:
[18] D. Bechki, H. Bouguettaia, J. Blanco-Galvez, S. Babay, B. Bouchekima, S. Boughali and H. Mahcene, “Effect of partial intermittent shading on the performance of a simple basin solar still in south Algeria,” Desalination, Vol. 260, No.1-3, pp. 65–69, Sep 2010. [Online]. Available:
[19] A.A. El-Sebaii, “Effect of wind speed on some designs of solar stills,” Energy Convers. Manage, Vol. 41, No. 6, pp. 523-538, Apr 2000. [Online]. Available:
[20] A. Hanson, W. Zachritz, K. Stevens, L. Mimbela, R. Polka and L. Cisneros, “Distillate water quality of a single-basin solar still: laboratory and field studies,” Solar Energy Vol. 76, No. 5, pp. 635-645, 2004. [Online]. Available:
[21] S. Aboul-Enein, A.A. El-Sebaii and E. El-Bialy, “Investigation of a single-basin solar still with deep basins,” Renew. Energy, Vol. 14, No. 1-4, pp. 299–305, May-Aug 1998. [Online]. Available:
[22] J. Karlsson and A. Roos, “Modelling the angular behavior of the total solar energy transmittance of windows,” Solar Energy, Vol. 69, No. 4, pp. 321-329, 2000. [Online] Available:
[23] G.N. Tiwari, J.M. Thomas and E. Khan, “Optimisation of glass cover inclination for maximum yield in a solar still,” Heat Recov. Syst. CHP, Vol. 14, No. 4, pp. 447-455, Jul 1994. [Online]. Available:
[24] A.K. Singh, G.N. Tiwari, P.B. Sharma and E. Khan, “Optimization of orientation for higher yield of solar still for a given location,” Energy Convers. Manage., Vol. 36, No. 3, pp. 175-181, Mar 1995. [Online]. Available:
[25] A.K Tiwari and G.N. Tiwari, “Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition,” Desalination, Vol. 195, No. 1-3, pp. 78-94, Aug 2006. [Online]. Available:
[26] R. Tripathi and G.N Tiwari, “Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction,” Solar Energy, Vol. 80, No. 8, pp. 956-967, Aug 2006. [Online]. Available:
[27] N.H.A. Rahim, “Utilisation of new technique to improve the efficiency of horizontal solar desalination still,” Desalination, Vol. 138, No. 1-3, pp. 121-128, Sep 2001. [Online]. Available:
[28] M. K. Phadatare and S. K. Verma, “Influence of water depth on internal heat and mass transfer in a plastic solar still,” Desalination, Vol. 217, No. 1-3, pp. 267-275, Nov 2007. [Online]. Available:
[29] J. Duffie, W. Beckman, “Available solar radiation,” in Solar Engineering of Thermal Processes, Madison, WI, US: John Wiley & Sons, Inc., 1980, pp. 3-147.
[30] S. M. Radwan, A. A. Hassanain and M. A. Abu-Zeid, “Single slope solar still for seawater distillation,” World App. Sci. J. Vol. 7, No. 4, pp. 485-497, 2009. [Online]. Available:
[31] National Oceanic and Atmospheric Administration, National Aeronautics And Space Administration, United States Air Force, U.S. Standard Atmosphere, U.S.A , Washington D.C., 1976.
[32] N. Schulz, J. P. Boisier and P. Aceituno, “Climate change along the arid coast of northern Chile,” Int. J. Climatol., Vol. 32, pp. 1803-1814, 2011. [Online]. Available:
[33] P. Cereceda, H. Larrain, P. Osses, M. Farías, I. Egaña, 2008. “The climate of the coast and fog zone in the Tarapacá Region, Atacama Desert, Chile,” Atmos. Res. Vol.87, No. 3-4, pp 301-311, Mar 2008. [Online]. Available:
[34] F. del Sol, E. Sauma, “Economic impacts of installing solar power plants in northern Chile,” Renew. Sustain. Energy Rev. Vol.19, pp. 489-498, Mar 2013. [Online]. Available:
[35] S. Davis, R. de Wiest, Hidrogeologia, Barcelona: Ariel, 1967.
[36] R. Arun Kumar, G. Esakkimuthu and K. Kalidasa Murugavel, “Performance enhancement of a single basin single slope solar still using agitation effect and external condenser,” Desalination, Vol. 399, pp. 198-202, Dec 2016. [Online]. Available:
[37] N. Rahbar, J. A. Esfahani and A. Asadi, “An experimental investigation on productivity and performance of a new improved design portable asymmetrical solar still utilizing thermoelectric modules,” Energy Convers. Manage., Vol. 118, pp. 55-62, Jun 2016. [Online]. Available:
[38] G. Howard and J. Bartram, Domestic Water Quantity, Service, Level and Health. Geneva, Switzerland: WHO, 2003, p. 9. [Online]. Available:
[39] WHO, Guías para la calidad del agua potable, 3a ed. Geneva, Switzerland: WHO, 2004, p. 255-267. [Online]. Available:
[40] Requisitos de la calidad del agua para diferentes usos, NCh 1333/ of 78, 1987.
[41] R.O. Nable, G. S. Bañuelos and J. G. Paull, “Boron toxicity,” Plant and Soil, Vol. 193, No. 1-2, pp. 181-198, 1997
[42] Agua Potable - Parte 1: Requisitos, que establece los requisitos de calidad que debe cumplir el agua potable en todo el territorio nacional, NCh 409/1.Of., 2005.
How to Cite
Chavez-Yavara, W. A., Torres-Paiva, B. A., & Zambra-Sazo, C. E. (2018). Effect of different geographic altitudes on the performance of a conventional solar still with arsenic and boron removal efficiency in an arid zone. Ingenieria Y Universidad, 22(2).
Civil and environmental engineering