Published Mar 16, 2012



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


William Gómez-Rivera, MSc

William Aperador-Chaparro, PhD

Arnoldo Emilio Delgado-Tobón, MSc

##plugins.themes.bootstrap3.article.details##

Abstract

Colombia has a wind potential of nearly 21,000 MW. Nevertheless, the technology used so far is totally foreign and the knowledge currently available in Colombia for producing wind turbines at an industrial level is not sufficient. This article describes the first development stage for lowpower (200 W) wind turbine rotors, and presents the selection process of the aerodynamic parameters involved in the design and implementation of two rotors with different profiles (NACA 4412 and NACA 2509). It includes the corresponding mechanical modeling, the aerodynamic and structural analysis of the two rotors, as well as an energy efficiency comparison under laboratory conditions.

Keywords

Diseño de rotores, turbinas de aire, industria de energía eólica, desarrollo científico y tecnológicoDesign of rotors, air-turbines, wind power industry, scientific and technological development

References
AFP. Actualidad internacional. Unos 100.000 usuarios consumirán energía eólica en Costa Rica [documento en línea]. [Consulta: 30-01-2010].
AL-BAHADLY, I. Building a wind turbine for rural home. Energy for Sustainable Development. 2009, núm. 13, pp. 159-165.
CROWELL, S. R. y GARY, A. The descriptive geometry of nose cones [documento en línea]. 1996. [Consulta 06-06-2009].
EMPRESAS PÚBLICAS DE MEDELLÍN (EPM). Parque eólico Jepirachi [documento en línea]. [Consulta: 03-06-2009].
eRENOVABLE. Blog de energías renovables [documento en línea]. 2009. [Consulta: 03-2010].
GÓMEZ, R. y LLANO, L. Simulación del viento atmosférico y aplicación experimental. Ciencia e Ingeniería Neogranadina. 2006, vol. 16, núm. 1. pp. 5-14.
GRUPO EL COMERCIO. Francesa Altsom instalará en Brasil planta de montaje de turbinas eólicas [documento en línea]. [Consulta: 30-01-2010].
HABALI, S. M. y SALEHB, I. A. Local design, testing and manufacturing of small mixed airfoil wind turbine blades of glass fiber reinforced plastics-Part I. Design of the blade and root. Energy Conversion & Management. 2000, núm. 41, pp. 249-280.
IEC61400-2:2006. Design requirements for small wind turbines. s. d.
JACOBS, E. N.; WARD, K. E.; PINKERTON, R. M. The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. Washington: Massachusetts Institute of Technology Library, 1933.
LYSEN, E. H. Introduction to wind energy. CWD. Consultancy services wind energy developing countries. Amersfoort: s. e., 1983.
MISHNAEVSKY, L.; FREEREB, P.; SINHAB, R.; ACHARYAB, P.; SHRESTHAC, R. y MANANDHAR, P. Small wind turbines with timber blades for developing countries. Materials choice, development, installation and experiences. Renewable Energy. 2011, num. 36, pp. 2128-2138.
RINCÓN, E.; CASTRO, L. e IGLESIAS, D. Resistencia de materiales: determinación de tensiones y deformaciones. Extensiometria. Madrid: Visionet, 2006.
WANG, F.; BAIA, L.; FLETCHERB, J.; WHITEFORDC J. y CULLENC, D. Development of small domestic wind turbine with scoop and prediction of its annual power output. Renewable Energy. 2008, núm. 33, pp. 1637-1651.
How to Cite
Gómez-Rivera, W., Aperador-Chaparro, W., & Delgado-Tobón, A. E. (2012). Rotor development for a small wind turbine (200 Watts) through of Local technology implementation. Ingenieria Y Universidad, 15(2). https://doi.org/10.11144/Javeriana.iyu15-2.drpt
Section
Articles

Most read articles by the same author(s)