Published Jun 11, 2013


Google Scholar
Search GoogleScholar

Maikel Yelandi Leyva-Vázquez, PhD

Karina Yelandi Pérez-Teurel, MSc

Ailyn Febles-Estrada, PhD

Jorge Gulín-González, PhD



The scenario analysis is a strategic planning method frequently used in technological management. The use of diffuse cognitive maps for this purpose is an approach that, despite being relatively recent, has increasingly gained attention. One of the main difficulties of this approach is related to the qualitative interpretation that is often given to the simulation results using this technique. In this paper, we propose a new model that uses the ordered weighted average operators (OWA) on the notion of distance for the scenario analysis based on diffuse cognitive maps. Among the advantages and innovations is the structuring of the process, the possibility of sorting out the alternatives in a flexible way by allowing to express the degree of acceptance of the risks and the level of compensation among the criteria through the weight vector of the OWA operator. We present an application example for the analysis of the business case in an organization that develops biomedical software, in order to demonstrate the applicability of the proposal.


Scenario analysis, diffuse cognitive maps, OWA operators, causal models, biomedical softwareanálisis de escenarios, mapas cognitivos difusos, operadores OWA, modelos causales, software biomédico

AMER, M. (2011). Development of fuzzy cognitive map (FCM) based scenarios. Paper presented at the Technology Management in the Energy Smart World (PICMET), 2011 Proceedings of PICMET ‘11.
AMIRI, M.; EKHTIARI, M. y YAZDANI, M. Nadir compromise programming: A model for optimization of multi-objective portfolio problem. Expert Systems with Applications. 2011, vol. 38, núm. 6, pp. 7222-7226.
BANULS, V. A. y SALMERÓN, J. L. A Scenario-Based Assessment Model—SBAM. Technological orecasting and Social Change. 2007, vol. 74, núm. 6, pp. 750-762.
BIFFL, S.; AURUM, A.; BOEHM, B., et al. Value-based software engineering. Secaucus, NJ, USA: Springer-Verlag New York Inc., 2005.
BOEHM, B. Value-based software engineering: reinventing. ACM SIGSOFT Software Engineering Notes. 2003, vol. 28, núm. 2, pp. 3.
BUENO, S. y SALMERÓN, J. L. Benchmarking main activation functions in fuzzy cognitive maps. Expert Systems with Applications. 2009, vol. 36, núm. 3, pp. 5221-5229.
FILEV, D. y YAGER, R. R. On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems. 1998, vol. 94, núm. 2, pp. 157-169.
GARCIA-CASCALES, M. S. y LAMATA, M. T. Nueva aproximación al método tópsis difuso con etiquetas lingüísticas. Paper presented at the ESTYLF 2010.
GLYKAS, M. Fuzzy Cognitive Maps: Advances in Theory, Methodologies, Tools and Applications: Secaucus, NJ, USA: Springer Verlag, 2010.
GLYKAS, M.; GIORDANO, R. y VURRO, M. Fuzzy Cognitive Map to Support Conflict Analysis in Drought Management Fuzzy Cognitive Maps. 2010, vol. 247, pp. 403-425).
GOODIER, C.; AUSTIN, S.; SOETANTO, R., et al. Causal mapping and scenario building with multiple organisations. Futures. 2010, vol. 42, núm. 3, pp. 219-229.
HAMMING, R. W. Error detecting and error correcting codes. Bell System technical journal. 1950, vol. 29, núm. 2, pp. 147-160.
JETTER, A. y SCHWEINFORT, W. Building scenarios with Fuzzy Cognitive Maps: An exploratory study of solar energy. Futures. 2011, vol. 43, núm. 1, pp. 52-66.
KAZMAN, R.; ABOWD, G.; BASS, L., et al. Scenario-based analysis of software architecture. Software, IEEE. 1996, vol. 13, núm. 6, pp. 47-55.
KOSKO, B. Fuzzy cognitive maps. International Journal of Man-Machine Studies. 1986, vol. 24, núm. 1, pp. 65-75.
KOSKO, B. Hidden patterns in combined and adaptive knowledge networks. International Journal of Approximate Reasoning. 1988, vol. 2, núm. 4, pp. 377-393.
LEYVA-VÁZQUEZ, M. Y.; ROSADO-ROSELLO, R. Y FEBLES-ESTRADA, A. Modelado y análisis de los factores críticos de éxito de los proyectos de software mediante mapas cognitivos difusos. Ciencias de la Información. 2012, vol. 43, núm. 2, pp. 41-46.
LEYVA, M. y PIÑERO, P. Modelo para la evaluación y selección de proyectos de innovación en las tecnologías de la información. Revista Virtual Pro. 2010, vol. 01, pp.17.
LIN, C. T. Y LEE, C. S. G. Neural-network-based fuzzy logic control and decision system. IEEE. 2002, vol. 40, pp. 1320-1336.
MADACHY, R. J. Software process dynamics (1 edition ed.). Wiley-IEEE Press, 2008.
MARÍA SOCORRO, G. C. Métodos para la comparación de alternativas mediante un Sistema de Ayuda a la Decisión (S.A.D.) y “Soft Computing”. Unpublished Tesis en opción al grado de doctor en ciencias, Universidad Politécnica de Cartagena, Cartagena. 2009.
MARTÍN-SÁNCHEZ, F.; HERMOSILLA, I. Y VICENTE, F. Updating the BIOINFOMED Study: Recent Outstanding Developments in Biomedical Informatics. European Journal for Biomedical Informatics. 2005, vol. 1, pp. 6.
MARTÍN-SANCHEZ, F.; IAKOVIDIS, I.; NØRAGER, S., et al. Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. Journal of Biomedical Informatics. 2004, vol. 37, núm. 1, pp. 30-42.
MERIGÓ, J. M., y GIL-LAFUENTE, A. M. New decision-making techniques and their application in the selection of financial products. Information Sciences. 2010, vol.180, núm. 11, pp. 2085-2094.
PING, C. W. A Methodology for Constructing Causal Knowledge Model from Fuzzy Cognitive Map to Bayesian Belief Network. Unpublished PhD Thesis, Chonnam National University. 2009.
ROMERO LÓPEZ, C. Análisis de las decisiones multicriterio. Madrid: Isdefe, 1996.
SALMERON, J. L. Forecasting Risk Impact on ERP Maintenance with Augmented Fuzzy Cognitive Maps. IEEE Transactions on Software Engineering. 2011, vol. 99 (PrePrints).
SALMERON, J. L., VIDAL, R. y MENA, A. Ranking fuzzy cognitive map based scenarios with TOPSIS. Expert Systems with Applications. 2012, vol. 39, núm. 3, pp. 2443-2450.
SINGH, A. Architecture value mapping: using fuzzy cognitive maps as a reasoning mechanism for multi-criteria conceptual design evaluation. Unpublished PhD Thesis, Missouri University of Science and Technology, Missouri. 2011.
SMITH, G. y SIDKY, A. Becoming agile: an imperfect world. Greenwich: Manning, 2009.
SOLER, L. S.; KOK, K.; CAMARA, G., et al. Using fuzzy cognitive maps to describe current system dynamics and develop land cover scenarios: a case study in the Brazilian Amazon. Journal of Land Use Science. 2011, pp. 1-27.
STACH, W.; KURGAN, L. y PEDRYCZ, W. Expert-Based and Computational Methods for Developing Fuzzy Cognitive Maps. In M. Glykas (Ed.), Fuzzy Cognitive Maps (pp. 23-41). Berlin: Springer, 2010.
SUTCLIFFE, A. G.; MAIDEN, N. A. M.; MINOCHA, S., et al. Supporting scenario-based requirements engineering. Software Engineering, IEEE Transactions on. 1998, vol. 24, núm. 12, pp. 1072-1088.
TORRA, V. y NARUKAWA, Y. Modeling decisions: information fusion and aggregation operators: Springer, 2007.
YAGER, R. R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. Systems, Man and Cybernetics, IEEE Transactions on. 1988, vol. 18, núm. 1, pp. 183-190.
YAGER, R. R. Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems. 1996, vol.11, núm. 1, pp. 49-73.
ZADEH, L. A. Fuzzy sets. Information and Control. 1965, vol. 8, núm. 3, pp. 338-353.
How to Cite
Leyva-Vázquez, M. Y., Pérez-Teurel, K. Y., Febles-Estrada, A., & Gulín-González, J. (2013). A model for the scenario analysis based on diffuse cognitive maps: a case study in biomedical software. Ingenieria Y Universidad, 17(2), 375–390.