Published May 30, 2014



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


Edgar Eduardo Salazar-Flórez, BSc

Julian Eduardo Mora-Moreno, BSc

Carlos Rodrigo Correa-Cely, PhD

##plugins.themes.bootstrap3.article.details##

Abstract

This article shows the most relevant results, related to the optimum design of a multilayer electromagnetic absorber for the wireless communications range. It was designed through two optimization strategies, a metaheuristic (Particle Swarm Optimization [PSO]) and a deterministic one (Interval Analysis). Despite achieving similar results, the last one proved to require an increased amount of computation time. Nevertheless, and due to its nature, the solution achieved was unique, while in PSO the results reproducibility was low, possibly due to the high complexity of the objective function.

Keywords

Electromagnetic absorber, optimization, particle swarm, interval analysis., Electromagnetic wave absorber, Interval analysis (Mathematics).Absorbedor electromagnético, optimización, enjambre de partículas, análisis de intervalos, análisis de intervalos (Matemáticas).

References
Afsar , M. et al. A millimeter-wave tunable electromagnetic absorber based on e–Al-Fe2O3 nanomagnets. IEEE Transactions on Magnetics. 2011, vol. 47, no. 2, pp. 333-336.
Bronwell, A. Transmission-line analogies of plane electromagnetic-wave reflections. Proceedings of IRE. 1994, vol. 32, no. 4, pp. 233-241.
Chamaani , S. et al. Multi-objective particle swarm optimization for electromagnetic absorber design. Progress in Electromagnetics Research (PIER). 2008, vol. 79, pp. 353–366.
CUI, S. WEILE, D.S. and VOLAKIS, J.L. Novel planar electromagnetic absorbers design using genetic algorithm. IEEE Transactions on Antennas and Propagation. 2006, vol. 54, no. 6, pp. 1811-1817.
Cui, S. and Weile, D. S. Application of a novel parallel swarm optimization to design electromagnetic absorber. Antennas and Propagation Society International Symposium, IEEE. 2005, pp. 3616-3624.
Kennedy , J. and Eberhart , R.C. Particle swarm optimization. Proceedings of IEEE Con, Neural Networks IV, Piscataway, NJ, 1995, pp. 1942-1948.
Liu, H. et al. Electromagnetic wave absorber optimal design based on improved particle swarm optimization. EMC´2009, IEICE, Kyoto, Japan, 2009, pp. 797-800.
Michielssen , E. et al. Design of lightweight, broad-band microwave absorbers using genetic algorithms. IEEE Transactions on Microwave Theory and Techniques. 1993, vol. 41, no. 617, pp. 1024-1031.
Moore, R.E., Baker, R. M. and CLOUD, M.J. Introduction to interval analysis. Philadelphia: Society for Industrial and Applied Mathematics, 2009.
NORNIKMAN H. et al. Study and simulation of an edge couple Split ring resonator (EC-SRR) on truncated pyramidal microwave absorber. Progress in Electromagnetics Research. 2012, vol. 127, pp. 319-334.
Robinson , J. and Rahmat -Samii, Y. Particle swarm optimization in electromagnetics. IEEE Transaction on Antennas and Propagation. 2004, pp. 397-407.
Vecchia, P. et al. Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz-300 GHz). ICNIRP 16, 2009.
WATTS C. et al. Metamaterial electromagnetic wave absorbers. Verlag: Wiley-VCH, 2012.
ZHAO, B. et al. Fabrication and electromagnetic characteristics of microwave absorbers containing Li0.35Zn0.3Fe2.35O4 micro-belts and nickel-coated carbon fibers. Journal of Magnetism and Magnetic Materials. 2013, vol. 345, pp. 249-254.
How to Cite
Salazar-Flórez, E. E., Mora-Moreno, J. E., & Correa-Cely, C. R. (2014). Design of optimum electromagnetic absorbers in the wireless communications range. Ingenieria Y Universidad, 18(1), 17–42. https://doi.org/10.11144/Javeriana.iyu18-1.doea
Section
Articles