Published Jun 17, 2021



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Nathalie Hernández, MSc http://orcid.org/0000-0001-5084-7937

Nicolas Caradot, PhD http://orcid.org/0000-0002-5252-4880

Hauke Sonnenberg, MSc https://orcid.org/0000-0001-9134-2871

Pascale Rouault, PhD http://orcid.org/0000-0003-3986-0123

Andrés Torres, PhD http://orcid.org/0000-0001-8693-8611

##plugins.themes.bootstrap3.article.details##

Abstract

Objective: this paper focused on: (i) developing a deterioration model based on support vector machines (SVM) from its regression approach to separate the prediction of the structural condition of sewer pipes from a classification by grades and predict the scores obtained by failures found in CCTV inspections; and (ii) comparing the prediction results of the proposed model with the ones obtained by a deterioration model based on SVM classification tasks to explore the advantages and disadvantages of their predictions from different perspectives. Materials and methods: The sewer network of Bogota was the case study for this work in which a dataset consisting of the characteristics of 5031 pipes inspected by CCTV (obtained by GIS) was considered, as well as information on external variables (e.g., age, sewerage, and road type). Probability density functions (PDF) were used to convert the scores given by failures found in CCTV into structural grades. In addition, three techniques were used to evaluate the predictions from different perspectives: positive likelihood rate (PLR), performance curve and deviation analysis. Results: it was found that: (i) SVM-based deterioration model used from its regression approach is suitable to predict critical structural conditions of uninspected sewer pipes because this model showed a PLR value around 6.8 (the highest value among the predictions of all structural conditions for both models) and 74 % of successful predictions for the first 100 pipes with the highest probability of being in critical conditions; and (ii) SVM-based deterioration model used from its classification approach is suitable to predict other structural conditions because this model showed homogeneous PLR values for the prediction of all structural conditions (PLR values between 1.67 and 3.88) and deviation analysis results for all structural conditions are lower than the ones for the SVM-based model from its regression approach.

Keywords

Sewer asset management, structural condition, classification and regression models, support vector machines (SVM)gestión de activos del alcantarillado, condición estructural, modelos de clasificación y regresión, máquinas de soporte vectorial (SVM)

References
[1] B. C. Ferguson, R. R. Brown, and A. Deletic, “Diagnosing transformative change in urban water systems: Theories and frameworks,” Global Environ. Change, vol. 23, no. 1, pp. 264–280, 2013. doi: 10.1016/j.gloenvcha.2012.07.008
[2] H. Osman, “Agent-based simulation of urban infrastructure asset management activities,” Automat. Const., vol. 28, pp. 45–57, 2012. doi: 10.1016/j.autcon.2012.06.004
[3] N. Caradot et al., “The benefits of deterioration modelling to support sewer asset management strategies,” presented at the 8th Int. Conf. Sewer Process Networ., Rotterdam, The Netherlands, August 31–September 2, 2016.
[4] H. S. Baik, H. S. Jeong, and D. M. Abraham, “Estimating transition probabilities in Markov chain-based deterioration models for management of wastewater systems,” J. Water Resour. Plan. Manag., vol. 132, no. 1, pp. 15–24, 2006. doi: 10.1061/(ASCE)0733-9496(2006)132:1(15)
[5] M. A. Cardoso, M. S. Silva, S. T. Coelho, M. C. Almeida, and D. I. C. Covas, “Urban water infrastructure asset management: A structured approach in four water utilities,” Water Sci. Technol., vol. 66, no. 12, pp. 2702–2711, 2012. doi: 10.2166/wst.2012.509
[6] R. Younis and M. A. Knight, “Development and implementation of an asset management framework for wastewater collection networks,” Tunnelling Underground Space Technol., vol. 39, pp.130–143, 2014. doi: 10.1016/j.tust.2012.09.007
[7] L. T. Wright, J. P. Heaney, and S. Dent, “Prioritizing sanitary sewers for rehabilitation using least-cost classifiers,” J. Infrastructure Syst., vol. 12, no. 3, 174–183, 2006. doi: 10.1061/(ASCE)1076-0342(2006)12:3(174)
[8] Y. le Gat, “Modelling the deterioration process of drainage pipelines,” Urban Water J., vol. 5, no. 2, 97–106, 2008. doi: 10.1080/15730620801939398
[9] M. M. Rokstad and R. M. Ugarelli, “Evaluating the role of deterioration models for condition assessment of sewers,” J. Hydroinform., vol. 17, no. 5, 789–804, 2015. doi: 10.2166/hydro.2015.122
[10] D. H. Tran, A. W. M. Ng, and B. J. C. Perera, “Neural networks deterioration models for serviceability condition of buried stormwater pipes,” Eng. Appl. Artificial Intelligence, vol. 20, no. 8, 1144–1151, 2007. doi: 10.1016/j.engappai.2007.02.005
[11] D. H. Tran, A. W. M. Ng, B. J. C. Perera, S. Burn, and P. Davis, “Application of probabilistic neural networks in modelling structural deterioration of stormwater pipes,” Urban Water J., vol. 3, no. 3, 175–184, 2006. Available: https://doi.org/10.1080/15730620600961684
[12] J. Mashford, D. Marlow, D. Tran, and R. May, “Prediction of sewer condition grade using support vector machines,” J. Comput. Civil Eng., vol. 25, no. 4, pp. 283–290, 2010. doi: 10.1061/(ASCE)CP.1943-5487.0000089
[13] K. Roushangar and R. Ghasempour, “Prediction of non-cohesive sediment transport in circular channels in deposition and limit of deposition states using SVM,” Water Sci. Technol. Water Supply, vol. 17, no. 2, pp. 537–551, 2017. doi: 10.2166/ws.2016.153
[14] F. Granata, S. Papirio, G. Esposito, R. Gargano, and G. de Marinis, “Machine learning algorithms for the forecasting of wastewater quality indicators,” Water, vol. 9, no. 2, p. 105, 2017. doi: 10.3390/w9020105
[15] N. Hernández, N. Caradot, H. Sonnerberg, P. Rouault, and A. Torres, “Support tools to predict the critical structural condition of uninspected sewer pipes in Bogota D. C.,” presented at LESAM Water Wastewater Infrastructure Conf., Trondheim, Norway, 20–22 June, 2017.
[16] R. Thornhill and P. Wildbore, “Sewer defect codes: Origin and destination,” Underground Construction, Apr. 2005. Available: https://www.thefreelibrary.com/Sewer+defect+codes%3a+origin+and+destination.-a0132051614
[17] Gerencia Corporativa de Planeamiento y Control, “Informe del Balance General del PDD 2012-2016, ‘Bogotá Humana’”, Empresa de Acueducto y Alcantarillado de Bogotá (EAAB), Bogotá, Colombia, 2016. Available: https://www.acueducto.com.co/wps/html/resources/empresa/2015/24_12_15_atenCiudadano/Informe_segplan_inv_y_gestion_corte_sept%2030_de_2015.pdf
[18] Empresa de Acueducto y Alcantarillado de Bogotá (EAAB), “NS-058. Aspectos Técnicos para inspección y mantenimiento de redes y estructuras de alcantarillado”, Bogotá, Colombia, EAAB-E. S. P., 2001.
[19] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern analysis. Cambridge: Cambridge University Press, 2004.
[20] L. López-Kleine and A. Torres, “UV-vis in situ spectrometry data mining through linear and nonlinear analysis methods,” Dyna, vol. 81, no. 185, pp. 182–188, 2014. doi: 10.15446/dyna.v81n185.37718
[21] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis, “Kernlab-an S4 package for kernel methods in R.,” J. Stat. Softw., vol. 11, no. 9, pp.1–20, 2004. doi: 10.18637/jss.v011.i09
[22] R. Core Team. (2019) [Online]. R: A language and environment for statistical computing,” R Foundation for Statistical Computing. Available: https://www.gbif.org/es/tool/81287/r-a-language-and-environment-for-statistical-computing
[23] M. G. Genton, “Classes of kernels for machine learning: A statistics perspective,” J. Machine Learning Res., vol. 2, pp. 299–312, Dec. 2001. Available: http://www.jmlr.org/papers/volume2/genton01a/genton01a.pdf
[24] J. P. Davies, B. A. Clarke, J. T. Whiter, and R. J. Cunningham, “Factors influencing the structural deterioration and collapse of rigid sewer pipes,” Urban Water, vol. 3, nos. 1-2, pp.73–89, 2001. Available: https://doi.org/10.1016/S1462-0758(01)00017-6
[25] R. Baur and R. Herz, “Selective inspection planning with ageing forecast for sewer types,” Water Sci. Technol., vol. 46, nos. 6-7, pp. 389–396, 2002. doi: 10.2166/wst.2002.0704
[26] F. Chughtai and T. Zayed, “Integrating WRc and CERIU condition assessment models and classification protocols for sewer pipelines,” J. Infrastructure Syst., vol. 17, no. 3, pp. 129–136, 2011. DOI: 10.1061/(ASCE)IS.1943-555X.0000052
[27] P. Niño, H. Angarita, D. Vargas, and A. Torres, “Identificación factores de riesgo para la gestión patrimonial óptima de sistemas de drenaje urbano: estudio piloto en la ciudad de Bogotá,” presented at XXV Congreso Latinoamericano de Hidráulica, San José, Costa Rica, september 9–12, 2012.
[28] N. Hernandez, N. Obregón, and A. Torres, “Identificación de factores de tipo categórico relacionados con la condición estructural de tuberías de alcantarillado de Bogotá a partir de conceptos de entropía de la información,” Ingenier. Solidaria, vol. 12, no. 19, pp. 63–71, 2016. doi: 10.16925/in.v12i19.1194
[29] L. López-Kleine, N. Hernández, and A. Torres, “Physical characteristics of pipes as indicators of structural state for decision-making considerations in sewer asset management,” Ingenier. Invest., vol. 36, no. 3, pp. 15–21, 2016.
[30] C. D. Brown and H. T. Davis, “Receiver operating characteristics curves and related decision measures: A tutorial,” Chemometrics Intelligent Lab. Syst., vol. 80, no. 1, pp. 24–38, 2006. doi: 10.1016/j.chemolab.2005.05.004
[31] A. Kästner, I. Kropp, M. Schöne, and N. Caradot, “D2.1 Sewer deterioration modelling, in Braunschweig Dissemination approved by technical committee members: I. Charron, J. M. Brossard, Veolia Environnement Recherche & Innovation (VERI) V. Parez, Veolia Water, Technical Direction C. Sardet, OEWA Wasser und Abwasser GmbH (OEWA) P. Chudoba, Veolia Water Europe E. Eckert, J. Wachnewski, Berliner Wasserbetriebe (BWB) C. Mesek, Stadtentwässerung Braunschweig (SE|BS) A. Hartmann, Kompetenzzentrum Wasser Berlin gGmbH (KWB)”, Kompetenzzentrum Wasser Berlin gGmbH, 2015.
[32] N. Caradot et al., “The benefits of deterioration modelling to support sewer asset management strategies,” presented at 8th Int. Conf. Sewer Process Networ., August 31–September 2, 2016, Rotterdam, The Netherlands.
How to Cite
Hernández, N., Caradot, N., Sonnenberg, H., Rouault, P., & Torres, A. (2021). Support Vector Machines Used for the Prediction of the Structural Conditions of Pipes in Bogota’s Sewer System. Ingenieria Y Universidad, 25. https://doi.org/10.11144/Javeriana.iued25.svmu
Section
Civil and environmental engineering