Published Oct 12, 2021



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


Horacio Sánchez https://orcid.org/0000-0002-9030-394X

Wilmer Ponce, Msc https://orcid.org/0000-0002-4250-5184

Beatriz Brito, Msc https://orcid.org/0000-0002-3581-6777

William Viera, Msc https://orcid.org/0000-0003-4472-4126

Ricardo Baquerizo, Msc https://orcid.org/0000-0002-6268-3965

Maria Antonieta Riera, Msc https://orcid.org/0000-0002-7195-2821

##plugins.themes.bootstrap3.article.details##

Abstract

Objective: To obtain biofilms from starch and cellulose present in the avocado (Persea americana) peel and seed. Materials and methods: The starch characterization included humidity, gelatinization temperature, paste clarity, absorption index, solubility index, swelling power, amylose, amylopectin, amount, and starch yield. Five mixtures were made with 3 g of starch, 5 mL of 30 % NaOH (w/v), 3 g of cellulose, and different proportions for glycerin: 2 g; 2.5 g; 3 g; 3.5 g; 4 g, and PVA: 2 g, 3 g, 4 g, 5 g, and 6 g. Films were formed on acrylic plates, using the casting method. The bioplastic was characterized in terms of moisture, solubility in water, density, thickness, biodegradability, stress, deformation, and modulus of elasticity. Results and discusión: The addition of cellulose to the mixture does not contribute to film formation, unlike PVA which did. The film had the best physical appearance with a mixture of 2 g of glycerin and 6 g of PVA. The bioplastic characterization was 23.43 % humidity, 39.39 % for water solubility, 1.52 g/cm3 density, 0.58 mm thickness, 21.03 % weight loss for the biodegradability test, 1.53 MPa for tension, 21.25 % deformation, and 10,04 MPa for the modulus of elasticity. Conclusions: The bioplastic obtained did not show the resistance of traditional plastic. However, the results obtained serve as a starting point for the realization of other formulations, aimed at producing a bioplastic capable of competing with its synthetic relatives.

Keywords

Bioplastic, biodegradable, biopolymers, food wastebioplástico, Biopolímeros, biodegradable, residuos alimentarios

References
[1] C. Zhu, D. Li, Y. Sun, X. Zheng, X. Peng, and K. Zheng, “Plastic debris in marine birds from an island located in the South China Sea,” Mar. Pollut. Bull., vol. 149, no. 110566, pp. 1–4, 2019. doi: 10.1016/j.marpolbul.2019.110566
[2] I. E. Napper and R. C. Thompson, Marine plastic ppollution: Other than microplastic, 2nd ed. Oxford, UK. Elsevier Inc., 2019.
[3] J. R. Jambeck et al., “Plastic waste inputs from land into the ocean,” Science (80-. )., vol. 347, pp. 768–771, 2015. doi: 10.1126/science.1260352
[4] W. C. Li, H. F. Tse, and L. Fok, “Plastic waste in the marine environment: A review of sources, occurrence and effects,” Sci. Total Environ., vol. 566-567, pp. 333–349, 2016. doi: 10.1016/j.scitotenv.2016.05.084
[5] R. Verma, K. S. Vinoda, M. Papireddy, and A. N. S. Gowda, “Toxic pollutants from plastic waste: A review,” Procedia Environ. Sci., vol. 35, pp. 701–708, 2016. doi: 10.1016/j.proenv.2016.07.069
[6] L. S. Dilkes-Hoffman, S. Pratt, P. A. Lant, and B. Laycock, The role of biodegradable plastic in solving plastic solid waste accumulation. Cambridge, USA Elsevier Inc., 2019.
[7] J. Portugal-Pereira, R. Soria, R. Rathmann, R. Schaeffer, and A. Szklo, “Agricultural and agro-industrial residues-to-energy: Techno-economic and environmental assessment in Brazil,” Biomass and Bioenergy, vol. 81, pp. 521–533, 2015. doi: 10.1016/j.biombioe.2015.08.010
[8] E. Raigoza Montoya, L. M. Rúa Peláez, A. M. Restrepo, and L. M. Alzate, “Potencial aplicación de residuos de la industria de aguacate: evaluación de su capacidad antimicrobiana. Secado de la semilla del aguacate (Persea americana Mill),” Vitae, vol. 23, pp. S143–S144, 2016.
[9] M. Lubis, M. B. Harahap, M. H. S. Ginting, M. Sartika, and H. Azmi, “Production of bioplastic from avocado seed starch reinforced with microcrystalline cellulose from sugar palm fibers,” J. Eng. Sci. Technol., vol. 13, no. 2, pp. 381–393, 2018 [Online]. Available: http://jestec.taylors.edu.my/Vol 13 issue 2 February 2018/13_2_8.pdf
[10] M. H. S. Ginting, R. Hasibuan, M. Lubis, F. Alanjani, F. A. Winoto, and R. C. Siregar, “Utilization of avocado seeds as bioplastic films filler chitosan and ethylene glycol plasticizer,” Asian J. Chem., vol. 30, no. 7, pp. 1569–1573, 2018. doi: 10.14233/ajchem.2018.21254
[11] M. H. Ginting, M. Rmadhan Tarigan, and A. M. Singgih, “Effect of gelatinization temperature and chitosan on mechanical properties of bioplastics from avocado seed starch (Persea americana mill) with plasticizer glycerol,” Int. J. Eng. Sci., vol. 4, no. 12, pp. 36–43, 2015 [Online]. Available: http://www.theijes.com/papers/v4-i12/Version-2/F041202036043.pdf
[12] J. de J. Ornela and E. M. Yahía, “El aguacate en México,” Hortic. Int., vol. 38, pp. 76–85, 2002.
[13] J. Olaetta, “Industrialización del aguacate: estado actual y perspectivas futuras,” in Proc. V World Avocado Cong., 2003, pp. 749–754 [Online]. Available: http://www.avocadosource.com/WAC5/papers/wac5_p749.pdf
[14] N. Vásquez, L. Subiaga, and M. Asanza, “Exportaciones del aceite de aguacate extra virgen en Ecuador,” Rev. Obs. Econ. LatinoAm., vol. 08, 2018 [Online]. Available: https://www.eumed.net/rev/oel/2018/08/exportaciones-aceite-aguacate.html
[15] INEC, “Estadísticas agropecuarias. Información estadística. Tabulados ESPAC,” Quito, Ecuador, 2018. [Online]. Available: https://www.ecuadorencifras.gob.ec//estadisticas-agropecuarias-2/
[16] J. Jara-Samaniego et al., “Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production,” J. Clean. Prod., 2016. doi: 10.1016/j.jclepro.2016.09.178
[17] M. P. Domínguez, K. Araus, P. Bonert, F. Sánchez, G. San Miguel, and M. Toledo, “The avocado and its waste: An approach of fuel potential/application,” in Environment, Energy and Climate Change II. The Handbook of Environmental Chemistry. Cham: Springer, 2014, pp. 199–223.
[18] P. F. Builders, A. Nnurum, C. C. Mbah, A. A. Attama, and R. Manek, “The physicochemical and binder properties of starch from Persea americana Miller (Lauraceae),” Starch/Staerke, vol. 62, pp. 309–320, 2010. doi: 10.1002/star.200900222
[19] I. A. Pilla Barroso, “Desarrollo de un material termoplástico obtenido a partir de almidón de oca (Oxalis tuberosa) y plastificantes,” tesis de pregardo, Fac. Ing. Quím. Agroind., Escuela Politécnica Nacional, Quito, Ecuador, 2017.
[20] J. C. Toro and A. Caña, “Determinación del contenido de materia seca y almidon en yuca por el sistema de gravedad específico,” in Yuca: investigación, producción y utilización, Centro Internacional de Agricultura Tropical (CIAT), 1983, pp. 567–575.
[21] M. Grace, La yuca, 2nd ed. Roma. Organización de las Naciones Unidas para la Agricultura y la Alimentación, 1977.
[22] R. A. Anderson, H. F. Conway, V. F. Pfeifer, and E. L. Griffin, “Roll and extrusion-cooking of grain sorghum grits,” Cereal Sci. Today, vol. 14, no. 11, pp. 373–381, 1969 [Online]. Available: https://pubag.nal.usda.gov/catalog/31611
[23] C. Mestres, P. Colonna, M. C. Alexandre, and F. Matencio, “Comparison of various processes for making maize pasta,” J. Cereal Sci., vol. 17, no. 3, pp. 277–290, 1993. doi: 10.1006/jcrs.1993.1026
[24] A. Torres-Rapelo, P. Montero-Castillo, and M. Dura-Lengua, “Propiedades fisicoquímicas, morfológicas y funcionales del almidón de malanga (Colocasia esculenta),” Rev. Lasallista Investig., vol. 10, no. 2, pp. 52–61, 2013 [Online]. Available: http://www.scielo.org.co/pdf/rlsi/v10n2/v10n2a07.pdf
[25] S. A. S. Craig, C. C. Maningat, P. A. Seib, and R. C. Hoseney, “Starch paste clarity,” Cereal Chem., vol. 66, no. 3, pp. 173–182, 1989. doi: 10.1007/s13398-014-0173-7.2
[26] C. Belezaca-Pinargote et al., “Contenidos de celulosa y lignina en restos lignino-celulósicos de gran tamaño (necromasa) en un bosque templado de antiguo crecimiento del centro-sur de Chile,” Eur. Sci. Journal, ESJ, vol. 12, no. 24, pp. 403–414, 2016. doi: 10.19044/esj.2016.v12n24p403
[27] D. Sánchez-Aldana, J. C. Contreras-Esquivel, G. V. Nevárez-Moorillón, and C. N. Aguilar, “Caracterización de películas comestibles a base de extractos pécticos y aceite esencial de limón mexicano,” CYTA J. Food, vol. 13, no. 1, pp. 17–25, 2015. doi: 10.1080/19476337.2014.904929
[28] Á. García-Velázquez, M. G. Amado-Moreno, H. E. Campbell-Ramírez, R. A. Brito-Páez, and L. Toscano-Palomar, “Madera plástica con paja de trigo y matriz polimérica,” Rev. Tecnol. Marcha, vol. 26, no. 3, pp. 26–38, 2013. doi: 10.18845/tm.v26i3.1515
[29] D. Navia-Porras and N. Bejarano-Arana, “Evaluación de propiedades físicas de bioplásticos termo-comprimidos elaborados con harina de yuca,” Biotecnol. Sect. Agropecu. Agroind. BSAA, vol. 12, no. 2, pp. 40–48, 2014.
[30] R. Ortega-Toro, A. Jiménez, P. Talens, and A. Chiralt, “Films de almidón termoplástico. Influencia de la incorporación de hidroxipropil-metil-celulosa y ácido cítrico,” Biotecnol. Sect. Agropecu. Agroind. BSAA, vol. 12, no. 2, pp. 134–141, 2014 [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=6117734
[31] J. Acosta, H. Gomajoa, Y. Benavides, A. Charfuelan, and F. Valenzuela, “Evaluación del almidón de papa (Solanum tuberosum) en la obtención de bioplástico,” Bionatura, vol. 1, no. 1, 2018. doi: 10.21931/rb/cs/2018.01.01.2
[32] A. Amri, R. Hanifa, Evelyn, and E. Awaltanova, “The effects of graphene oxide functionalization on the properties of sago starch-based bioplastics,” IOP Conf. Ser. Mater. Sci. Eng., vol. 420, no. 1, 2018. doi: 10.1088/1757-899X/420/1/012061
[33] M. Cornelia and A. Christianti, “Utilization of modified starch from avocado (Persea americana Mill) seed in cream soup production,” in IOP Conference Series: Earth and Environmental Science, 2018, p. 2. doi: 10.1088/1755-1315/102/1/012074
[34] D. Arzapalo-Quinto, K. Huamán-Cóndor, M. Quispe-Solano, and C. Espinoza-Silva, “Extracción y caracterización del almidón de tres variedades de quinua (Chenopodium quinoa Willd) negra collana, pasankalla roja y blanca junín,” Rev. Soc. Quím. Perú, vol. 81, no. 1, pp. 44–54, 2015 [Online]. Available: http://www.scielo.org.pe/pdf/rsqp/v81n1/a06v81n1.pdf
[35] N. Meaño-Correa, A. Teresa Ciarfella-Pérez, and A. M. Dorta-Villegas, “Evaluación de las propiedades químicas y funcionales del almidón nativo de ñamecongo (Dioscorea bulbifera L.) para predecir sus posibles usos tecnológicos,” Saber, vol. 26, no. 2, pp. 182–187, 2014 [Online]. Available: https://www.redalyc.org/pdf/4277/427739467011.pdf
[36] P. Torres, A. Pérez, L. F. Marmolejo, J. Ordoñez, and R. R. García, “Una mirada a la agroindustria de extracción de almidón de yuca, desde la estandarización de procesos,” Eia, vol. 14, pp. 23–38, 2010 [Online]. Available: https://www.redalyc.org/pdf/1492/149218986002.pdf
[37] S. A. P. U. Samaraweera, A. B. G. C. J. de Silva, M. D. W. Samaranayake, K. V. T. Gunawardhane, and H. M. T. Herath, “Potential application of locally grown Sri Lankan corn varieties to utilize in the food industry; Corn Starch and Corn Syrup Abstract: Key words: Introduction: Materials and Methods ,” Int. J. Innov. Res. Technol. Sci., vol. 4, no. 6, pp. 17–22, 2016 [Online]. Available: http://ijirts.org/volume4issue6/IJIRTSV4I6003.pdf
[38] T. Tesfaye et al., “Valorisation of avocado seeds: Extraction and characterisation of starch for textile applications,” Clean Technol. Environ. Policy, 2018. doi: 10.1007/s10098-018-1597-0
[39] L. Chel-Guerrero, E. Barbosa-Martín, A. Martínez-Antonio, E. González-Mondragón, and D. Betancur-Ancona, “Some physicochemical and rheological properties of starch isolated from avocado seeds,” Int. J. Biol. Macromol., vol. 86, no. 302–308, 2016. doi: 10.1016/j.ijbiomac.2016.01.052
[40] D. M. Dos Santos, D. P. Ramirez-Ascheri, A. de Lacerda-Bukzem, C. Cintra-Morais, C. W. Piler-Carvalho, and J. L. Ramírez-Ascheri, “Physicochemical properties of starch from avocadoseed (Persea Americana Mill),” Bol. Cent. Pesqui. Process. Aliment., vol. 34, no. 2, pp. 1–12, 2017. doi: 10.5380/cep.v34i2.53138
[41] E. Agama-Acevedo, E. Juárez-García, S. Evangelista-Lozano, O. L. Rosales-Reynoso, and L. A. Bello-Pérez, “Características del almidón de maíz y relación con las enzimas de su biosíntesis,” Agrociencia, vol. 47, no. 1, pp. 1–12, 2013 [Online]. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952013000100001
[42] J. B. Amaya-Pinos, “Estudio de la dosificación del almidón extraído del banano en un polímero de tipo termoplástico,” Rev. Colomb. Química, vol. 48, no. 1, pp. 43–51, 2019. doi: 10.15446/rev.colomb.quim.v48n1.74469
[43] R. D. Salgado-Ordosgoitia, A. L. Paternina-Contreras, C. S. Cohen-Manrique, and J. A. Rodríguez-Manrique, “Análisis de las curvas de gelatinización de almidones nativos de tres especies de ñame: criollo (Dioscorea alata), espino (Dioscorea rotundata) y Diamante 22,” Inf. Tecnol., vol. 30, no. 4, pp. 93–102, 2019. doi: 10.4067/s0718-07642019000400093
[44] P. Vargas-Aguilar and D. Hernández-Villalobos, “Harinas y almidones de yuca, ñame, camote y ñampí: propiedades funcionales y posibles aplicaciones en la industria alimentaria,” Rev. Tecnol. Marcha, vol. 25, no. 6, pp. 37–45, 2013. doi: 10.18845/tm.v26i1.1120
[45] C. Granados, L. Guzman, D. C. Acevedo, M. M. Díaz, and A. A. Herrera, “Propiedades funcionales del almidón de Sagu (Maranta arundinacea),” Biotecnol. Sect. Agropecu. Agroind., vol. 12, no. 2, pp. 90–96, 2014 [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612014000200010
[46] J. G. Salcedo-Mendoza, M. C. Rodríguez-Lora, and J. A. Figueroa-Flórez, “Efecto de la acetilación en las propiedades estructurales y funcionales de almidones de yuca (Manihot esculenta Crantz) y ñame (Dioscorea alata cv. Diamante 22),” Rev. Mex. Ing. Quím., vol. 15, no. 3, pp. 787–796, 2016 [Online]. Available: http://rmiq.org/iqfvp/Pdfs/Vol. 15, No. 3/Alim2/RMIQTemplate.pdf
[47] M. H. S. Ginting, R. Hasibuan, M. Lubis, F. Alanjani, F. A. Winoto, and R. C. Siregar, “Supply of avocado starch (Persea americana Mill) as bioplastic material,” in IOP Conf. Ser. Mater. Sci. Eng., 2018. doi: 10.1088/1757-899X/309/1/012098
[48] C. A. Guevara-Lastre, V. Robles-Marín, L. F. León-Rocha, and N. A. Pupo-Jaramillo, “Influencia de la relación amilosa/amilopectina en la resistencia de los adhesivos elaborados a partir de almidones nativos de yuca y ñame,” CITECSA, vol. 7, no. 12, pp. 25–37, 2016 [Online]. Available: https://unipaz.edu.co/ojs/index.php/revcitecsa/index
[49] G. Vargas, P. Martínez, and C. Velezmoro, “Functional properties of potato (Solanum tuberosum) starch and its chemical modification by acetylation,” Sci. Agropecu., vol. 7, no. 3, pp. 223–230, 2016. doi: 10.17268/sci.agropecu.2016.03.09
[50] C. Medina et al., “Evaluación de dos métodos de extracción de almidón a partir de cotiledones de mango,” Bioagro, vol. 22, no. 1, pp. 67–74, 2010 [Online]. Available: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612010000100009
[51] A. Ceballos and S. Montoya, “Evaluación química de la fibra en semilla, pulpa y cáscara de tres variedades de aguacate,” Biotecnol. Sect. Agropecu. Agroind. BSAA, vol. 11, no. 1, pp. 103–112, 2013 [Online]. Available: http://www.scielo.org.co/pdf/bsaa/v11n1/v11n1a13.pdf
[52] J. A. Dávila, M. Rosenberg, E. Castro, and C. A. Cardona, “A model biorefinery for avocado (Persea americana Mill) processing,” Bioresour. Technol., vol. 243, pp. 17–29, 2017. doi: 10.1016/j.biortech.2017.06.063
[53] M. Enriquez, R. Velasco, and V. Ortíz, “Composición y procesamiento de películas biodegradables basadas en almidón,” Biotecnol. Sect. Agropecu. Agroind., vol. 10, no. 1, pp. 182–192, 2012.
[54] M. Lubis, M. B. Harahap, M. Hendra, S. Ginting, M. Sartika, and H. Azmi, “Effect of microcrystalline cellulose (MCC) from sugar palm fibres and glycerol addition on mechanical properties of bioplastic from avocado seed starch (Persea americana Mill),” in Int. Conf. Eng. Technol., Comp., Basics Appl. Sci. ECBA, 2016.
[55] J. Sayavedra-Delgado and R. Rodríguez-Maecker, “Desarrollo de bioplásticos a partir de tortas residuales y gomas naturales,” ESPE, vol. 13, pp. 208–211, 2018. doi: 10.24133/cctespe.v13i1.783
[56] Dasumiati, N. Saridewi, and M. Malik, “Food packaging development of bioplastic from basic waste of cassava peel (manihot uttilisima) and shrimp shell,” in IOP Conf. Ser. Mater. Sci. Eng., 2019. doi: 10.1088/1757-899X/602/1/012053
[57] M. Felix, V. Perez-Puyana, A. Romero, and A. Guerrero, “Development of protein-based bioplastics modified with different additives,” J. Appl. Polym. Sci., vol. 134, no. 42, pp. 45430 (1–8), 2017. doi: 10.1002/app.45430
[58] M. Enriquez, R. Velazco, and V. Ortiz, “Composición y procesamiento de películas biodegradables basadas en almidón,” Biotecnol. Sect. Agropecu. Agroind., vol. 10, no. 1, pp. 182–192, 2012 [Online]. Available: http://www.scielo.org.co/pdf/bsaa/v10n1/v10n1a21.pdf
[59] D. P. Navia, A. A. Ayala, and H. S. Villada, “Adsorción de vapor de agua de bioplásticos elaborados con harina de dos variedades de yuca (Manihot esculenta Crantz),” Inf. Tecnol., vol. 25, no. 6, pp. 23–32, 2014. doi: 10.4067/S0718-07642014000600004
[60] P. A. Vargas-Moreno and M. V. Oscar Julio, “Influencia del tipo de plastificante en la elaboración de bioplásticos , a partir de almidón de papa (Solamun tuberosum) Influence of plasticizer type on bioplastics development, from potato (Solanum tuberosum), starch,” Bistua, vol. 17, no. 2, pp. 239–249, 2019 [Online]. Available: http://revistas.unipamplona.edu.co/ojs_viceinves/index.php/BISTUA/article/view/3541/2056
[61] S. Abdou and S. Rouf, “Bioplastics production & characterization,” Int. Res. J. Adv. Eng. Techonol., vol. 5, no. 6, pp. 4474–4483, 2019 [Online]. Available: http://www.irjaet.com/Volume5-Issue-5,6/paper1.pdf
[62] D. P. Navia, A. A. Ayala, and H. S. Villada, “Biocompuestos de harina de yuca obtenidos por termo- compresión. Efecto de las condiciones de proceso,” Inf. Tecnol., vol. 26, no. 5, pp. 55–62, 2015. doi: 10.4067/S0718-07642015000500008
[63] I. T. Carvalho, B. N. Estevinho, and L. Santos, “Application of microencapsulated essential oils in cosmetic and personal healthcare products: A review,” Int. J. Cosmet. Sci., vol. 38, no. 2, pp. 109–19, 2016. doi: 10.1111/ics.12232
[64] K. Willett and B. Howell, “Using local invasive species and flora to manufacture collagen based biodegradable plastic tableware,” in Proc. Int. Conf. Eng. Design, ICED, 2017.
[65] L. Z. Olanyk, N. Volpato, and M. R. Rosa, “Development of a glycerol based polymer for additive manufacturing,” Waste Biomass Valoriz., vol. 10, no. 10, pp. 3115–3124, 2019. doi: 10.1007/s12649-018-0285-y
[66] R. C. Nissa, A. K. Fikriyyah, A. H. D. Abdullah, and S. Pudjiraharti, “Preliminary study of biodegradability of starch-based bioplastics using ASTM G21-70, dip-hanging, and soil burial test methods,” in IOP Conf. Ser. Earth Environ., Sci., 2019. doi: 10.1088/1755-1315/277/1/012007
[67] H. A. Saffian, K. Abdan, M. A. Hassan, N. A. Ibrahim, and M. Jawaid, “Characterisation and biodegradation of poly (lactic acid) blended with oil palm biomass and fertiliser for bioplastic fertiliser composites,” BioResources, vol. 11, no. 1, pp. 2055–2070, 2016. doi: 10.15376/biores.11.1.2055-2070
[68] J. Mina, “Caracterización físico-mecánica de un almidón termoplástico (tps) de yuca y análisis interfacial con fibras de fique,” Biotecnol. Sect. Agropecu. Agroind. BSAA, vol. 10, no. 2, pp. 99–109, 2012 [Online]. Available: http://www.scielo.org.co/pdf/bsaa/v10n2/v10n2a12.pdf
[69] D. Navia-Porras, A. Ayala-Aponte, and H. Villada-Castillo, “Efecto de la gelatinización de la harina de yuca sobre las propiedades mecánicas de bioplásticos,” Biotecnol. Sect. Agropecu. Agroind., vol. 13, no. 1, pp. 38–44, 2015. doi: 10.18684/bsaa(13)38-44
[70] A. Amri et al., “Properties enhancement of cassava starch based bioplastics with addition of graphene oxide,” in IOP Conf. Ser. Mat. Sci. Eng., vol. 345, no. 1, 2018. doi: 10.1088/1757-899X/345/1/012025
[71] Mr. Foruzanmehr, P. Y. Vuillaume, M. Robert, and S. Elkoun, “The effect of grafting a nano-TiO2 thin film on physical and mechanical properties of cellulosic natural fibers,” Mater. Des., vol. 85, no. 15, pp. 671–678, 2015. doi: 10.1016/j.matdes.2015.06.105
[72] O. O. Oluwasina, F. K. Olaleye, S. J. Olusegun, O. O. Oluwasina, and N. D. S. Mohallem, “Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film,” Int. J. Biol. Macromol., vol. 135, no. 15, pp. 282–293, 2019. doi: 10.1016/j.ijbiomac.2019.05.150
[73] M. Ortiz et al., “Desarrollo de una película plástica a partir del almidón extraído de papa residual,” in Ciencias de la ingeniería y tecnología handbook T-I, V. Pérez García, J. M. Rico Moreno, and J. A. GordilloSosa, Eds. México: ERCOFAN, 2013, pp. 186–193.
[74] M. R. Amin, M. A. Chowdhury, and M. A. Kowser, “Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch,” Heliyon, vol. 5, no. 8, p. e02009, 2019. doi: 10.1016/j.heliyon.2019.e02009

How to Cite
Sánchez, H., Ponce, W., Brito, B., Viera, W., Baquerizo, R., & Riera, M. A. (2021). Biofilms Production from Avocado Waste. Ingenieria Y Universidad, 25. https://doi.org/10.11144/Javeriana.iued25.bpaw
Section
Civil and environmental engineering