Published Jul 12, 2022


Google Scholar
Search GoogleScholar

Cesar René Blanco-Zuñiga, MSc

Zully Ximena Chacón-Rojas

Juan Sebastian Villarraga-Castillo

Heidy Elizabeth Guevara-Suarez

Yesica Nataly Casteblanco-Castro

Nicolás Rojas-Arias, MSC



Coal mining represents one of the primary economic incomes in the department of Boyacá, Colombia. However, the acid mine drainage (AMD) generated has a tremendous environmental impact in the area due to the presence of sulfate ions (SO4-2), heavy metals, and low pH This article studies the behavior in the content of Fe and sulfates in AMD samples when treated within an artificial anaerobic vertical flow wetland, analyzing the concentration of these elementsand the content of dissolved oxygen (DO) and pH at different time intervals. The treatment of a MAD from the department of Boyacá was carried out using a bioreactor prototype with an organic substrate to provide the necessary conditions for the development of sulfate-reducing bacteria. Measurements were made with hydraulic retention times between 24 to 120 hours, monitoring the changes in the content of total Fe, SO4-2, pH, and DO. The data obtained show a reduction for total Fe of 88.3%, established at 5.61g∙m-2∙day-1, and for SO4-2 of 34.3% with 9.35g∙m-2∙day-1; reaching a maximum removal degree of 52.32% at 120h for sulfates and 92% for Fe, where the maximum removal peak is achieved, reducing the Fe removal rate for longer times. The reduction in the concentration of Fe is related to the reduction of DO and regulation of the pH, in addition to favoring the reduction of sulfate ions through the formation of the mineralogical phases pyrite and siderite. These data show that the anoxic conditions of the organic environment are maintained, for which a subsequent aeration stage is suggested.


Acid Mine Drainage (AMD), Hydraulic Retention Time, Organic Substrate, Anaerobic Wetland, Sulfate-reducing bacteria (SRB)Tiempo de retención hidráulico, Substrato orgánico, Humedal anaeróbico, Bacteria sulfato-raductora (BSR), Drenaje acido de mina (DAM)

[1] D. M. Acosta-Bueno, Impactos ambientales de la minería de carbón y su relación con los problemas de salud de la población del municipio de Samacá (boyacá), según reportes ASIS 2005-2011, tesis especialización, Facultad de Ciencias de la Educación, Universidad Distrital Francisco José de Caldas, Bogotá 2016. Available:
[2] C. UPME, Ministerio de Minas y Energías, “Plan nacional de desarrollo minero con horizonte a 2025: Minería responsable con el territorio,” Bogotá, Colombia, 2017.
[3] R. H. Garzón, “Minería del carbón en Boyacá: entre la informalidad minera, la crisis de un sector y su potencial para el desarrollo.,” Rev. Zero, vol. 33, no. 2, 2014 [Online]. Available:
[4] C. A. Agudelo Calderón, J. C. García-Ubaqie, R. Robledo Martínez, C. A. García-Ubaque, and L. Quiroz-Arcentales, “Evaluación de condiciones ambientales: aire, agua y suelos en áreas de actividad minera en Boyacá, Colombia,” Rev. Salud Pública, vol. 18, no. 1, pp. 50–60, Apr. 2016 [Online]. doi:
[5] J. S. Pozo-Antonio, I. Puente-Luna, S. L. López, and M. V. Ríos, “Tratamiento microbiano de aguas ácidas resultantes de la actividad minera: Una revisión,” Tecnol. y Ciencias del Agua, vol. 8, no. 3, pp. 75–91, 2017. [Online].
[6] I. Park et al., “A review of recent strategies for acid mine drainage prevention and mine tailings recycling,” Chemosphere, vol. 219, pp. 588–606, March. 2019
[7] A. L. Boyles et al., “Systematic review of community health impacts of mountaintop removal mining,” Environ. Int., vol. 107, pp. 163–172, Oct. 2017, doi: 10.1016/j.envint.2017.07.002
[8] I. Moodley, C. M. Sheridan, U. Kappelmeyer, and A. Akcil, “Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products,” Miner. Eng., vol. 126, pp. 207–220, Sep. 2018 [Online].
[9] L. E. Bertassello, P. S. C. Rao, J. Park, J. W. Jawitz, and G. Botter, “Stochastic modeling of wetland-groundwater systems,” Adv. Water Resour., vol. 112, pp. 214–223, Feb. 2018
[10] J. Skousen et al., “Review of Passive Systems for Acid Mine Drainage Treatment,” Mine Water Environ., vol. 36, no. 1, pp. 133–153, Mar. 2017 [Online].
[11] J. E. Santos Jallath, F. M. Romero, R. Iturbe Argüelles, A. Cervantes Macedo, and J. Goslinga Arenas, “Acid drainage neutralization and trace metals removal by a two-step system with carbonated rocks, Estado de Mexico, Mexico,” Environ. Earth Sci., vol. 77, no. 3, p. 86, Feb. 2018 [Online].
[12] D. Forigua Quicasán, N. Fonseca Forero, and O. Y. Vasquez, “Prevención de drenajes ácidos de mina utilizando compost de champiñón como enmienda orgánica,” Rev. Colomb. Biotecnol., vol. 19, no. 1, pp. 92–100, 2017 [Online].
[13] N. Pérez, A. Schwarz, and H. Urrutia, “Tratamiento del drenaje ácido de minas: estudio de reducción de sulfato en mezclas orgánicas,” Tecnol. y Ciencias del Agua, vol. 8, no. 1, pp. 53–64, 2017 [Online].
[14] J. F. Shimp et al., “Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials,” Environ. Sci. Technol., vol. 23, no. 1, pp. 41–77, 1993 [Online].
[15] J. L. Schnoor, “Phytoremediation. Ground-Water Remediation Technologies Analysis Center Technology Evaluation Report TE-98-01,” 1997.
[16] A. M. Pat-Espadas, R. L. Portales, L. E. Amabilis-Sosa, G. Gómez, and G. Vidal, “Review of constructed wetlands for acid mine drainage treatment,” Water (Switzerland), vol. 10, no. 11, pp. 1–25, 2018 [Online].
[17] O. C. Türker, H. Böcük, and A. Yakar, “The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent,” J. Hazard. Mater., vol. 252–253, pp. 132–141, May 2013 [Online].
[18] J. J. Oertli and E. Grgurevic, “Effect of pH on the Absorption of Boron by Excised Barley Roots,” Agron. J., vol. 67, no. 2, pp. 278–280, Mar. 1975 [Online].
[19] L. C. Batty and P. L. Younger, “Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: effects of metal and nutrient uptake,” Environ. Pollut., vol. 132, no. 1, pp. 85–93, Nov. 2004 [Online].
[20] H. M. Leung et al., “Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components,” Environ. Sci. Pollut. Res., vol. 24, no. 10, pp. 9079–9088, Apr. 2017 [Online].
[21] P. Eger, “Wetland Treatment for Trace Metal Removal from Mine Drainage: The Importance of Aerobic and Anaerobic Processes,” Water Sci. Technol., vol. 29, no. 4, pp. 249–256, Feb. 1994 [Online].
[22] A. Ordonez, J. Loredo, and F. Pendas, “A Successive Alkalinity Producing System (Saps) As Operational Unit in a Hybrid Passive Treatment System for Acid Mine Drainage,” Mine, Water Environ. Sevilla, vol. 2, pp. 576–580, 1999 [Online]. Available:
[23] E. López Pamo, O. Aduvire, and D. Barettino, “Tratamientos pasivos de drenajes ácidos de mina: Estado actual y perspectivas de futuro,” Bol. Geol. y Min., vol. 113, no. 1, pp. 3–21, 2002 [Online]. Available: TRATAMIENTOS.pdf
[24] O. R. Stein, D. J. Borden-Stewart, P. B. Hook, and W. L. Jones, “Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands,” Water Res., vol. 41, no. 15, pp. 3440–3448, Aug. 2007 [Online].
[25] K. Dufresne, C. Neculita, J. Brisson, and T. Genty, “Metal Retention Mechanisms in Pilot-Scale Constructed Wetlands Receiving Acid Mine Drainage,” 10th Int. Conf. Acid Rock Drain. IMWA Annu. Conf., pp. 1–6, 2015. Available:
[26] J. Brisson and F. Chazarenc, “Maximizing pollutant removal in constructed wetlands: Should we pay more attention to macrophyte species selection?,” Sci. Total Environ., vol. 407, no. 13, pp. 3923–3930, Jun. 2009 [Online].
[27] X. Min, L. Chai, C. Zhang, Y. Takasaki, and T. Okura, “Control of metal toxicity, effluent COD and regeneration of gel beads by immobilized sulfate-reducing bacteria,” Chemosphere, vol. 72, no. 7, pp. 1086–1091, 2008, [Online].
[28] H. He, E. J. Veneklaas, J. Kuo, and H. Lambers, “Physiological and ecological significance of biomineralization in plants,” Trends Plant Sci., vol. 19, no. 3, pp. 166–174, Mar. 2014 [Online].
[29] C. Tejada-Tovar, Á. Villabona-Ortiz, and L. Garcés-Jaraba, “Adsorción de metales pesados en aguas residuales usando materiales de origen biológico Adsorption of heavy metals in waste water using biological materials,” Tecnológicas, vol. 18, no. 34, pp. 123–7799, 2015. Available:
[30] D. B. Johnson and K. B. Hallberg, “Acid mine drainage remediation options: A review,” Sci. Total Environ., vol. 338, no. 1-2 SPEC. ISS., pp. 3–14, 2005 [Online].
[31] C.-M. Neculita, G. J. Zagury, and B. Bussière, “Passive Treatment of Acid Mine Drainage in Bioreactors using Sulfate-Reducing Bacteria,” J. Environ. Qual., vol. 36, no. 1, pp. 1–16, Jan. 2007 [Online].
[32] D. Uçar, “Sequential Precipitation of Heavy Metals Using Sulfide-Laden Bioreactor Effluent in a pH Controlled System,” Miner. Process. Extr. Metall. Rev., vol. 38, no. 3, pp. 162–167, May 2017 [Online].
[33] W. E. Magowo, C. Sheridan, and K. Rumbold, “Global Co-occurrence of Acid Mine Drainage and Organic Rich Industrial and Domestic Effluent: Biological sulfate reduction as a co-treatment-option,” J. Water Process Eng., vol. 38, p. 101650, Dec. 2020 [Online].
[34] Y. Vasquez, M. C. Escobar, C. M. Neculita, Z. Arbeli, and F. Roldan, “Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity,” Chemosphere, vol. 153, pp. 244–253, Jun. 2016 [Online].
[35] D. Kepler and E. McCleary, “Passive aluminum treatment successes.,” Proc. 18th West Virginia Surf. Mine Drain. Task Force Symp., 1997.
[36] A. W. Rose, “Long-term performance of vertical flow ponds - An update,” 7th Int. Conf. Acid Rock Drain. 2006, ICARD - Also Serves as 23rd Annu. Meet. Am. Soc. Min. Reclam., vol. 2, pp. 1704–1716, 2006 [Online].
[37] C. Neculia, G. J. Zagury, and B. Bussière, “Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria.,” J. Environ. Qual., vol. 36, pp. 1–16, 2007, doi: https://doi. org/10.2134/jeq2006-0066
[38] J. Demchak, T. Morrow, and J. Skousen, “Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania,” Geochemistry Explor. Environ. Anal., vol. 1, no. 1, pp. 71–80, 2001 [Online].
[39] A. Sobolewski, “Metal species indicate the potential of constructed wetlands for long-term treatment of metal mine drainage,” Ecol. Eng., vol. 6, no. 4, pp. 259–271, Jun. 1996 [Online].
[40] P. L. Younger, “The longevity of minewater pollution: a basis for decision-making,” Sci. Total Environ., vol. 194–195, pp. 457–466, Feb. 1997 [Online].
[41] P. L. Younger, “Design, construcion and initial operation of full-scale compost-based passive systems for treatment of coal mine drainage and spoil leachate in the UK,” IMWA Symp. Johannesbg., pp. 413–424, 1998.
[42] M. A. Ahmad Farid et al., “A holistic treatment system for palm oil mill effluent by incorporating the anaerobic-aerobic-wetland sequential system and a convective sludge dryer,” Chem. Eng. J., vol. 369, no. March, pp. 195–204, 2019 [Online].
[43] Y. Chen, Y. Wen, Q. Zhou, J. Huang, J. Vymazal, and P. Kuschk, “Sulfate removal and sulfur transformation in constructed wetlands: The roles of filling material and plant biomass,” Water Res., vol. 102, pp. 572–581, Oct. 2016 [Online].
[44] O. J. Hao, J. M. Chen, L. Huang, and R. L. Buglass, “Sulfate‐reducing bacteria,” Crit. Rev. Environ. Sci. Technol., vol. 26, no. 2, pp. 155–187, May 1996 [Online].
[45] R. Gyure, “Microbial sulfate reduction in acidic (pH 3) strip-mine lakes,” FEMS Microbiol. Lett., vol. 73, no. 3, pp. 193–201, Apr. 1990[Online].
[46] D. Fortin and T. J. Beveridge, “Microbial sulfate reduction within sulfidic mine tailings: Formation of diagenetic Fe sulfides,” Geomicrobiol. J., vol. 14, no. 1, pp. 1–21, Jan. 1997 [Online].
[47] M. S. Oncel, A. Muhcu, E. Demirbas, and M. Kobya, “A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater,” J. Environ. Chem. Eng., vol. 1, no. 4, pp. 989–995, Dec. 2013[Online].
[48] I. Kushkevych, J. Kováč, M. Vítězová, T. Vítěz, and M. Bartoš, “The diversity of sulfate-reducing bacteria in the seven bioreactors,” Arch. Microbiol., vol. 200, no. 6, pp. 945–950, Aug. 2018 [Online].
[49] W. E. Magowo, C. Sheridan, and K. Rumbold, “Bioremediation of acid mine drainage using Fischer-Tropsch waste water as a feedstock for dissimilatory sulfate reduction,” J. Water Process Eng., vol. 35, p. 101229, Jun. 2020 [Online].
[50] L. Denis, H. Grzeskowiak, D. Trias, and D. Delaux, “Accelerated Life Testing,” in Reliability of High-Power Mechatronic Systems 2, Elsevier, 2017, pp. 1–56.
[51] J. K. Bwapwa, A. T. Jaiyeola, and R. Chetty, “Bioremediation of acid mine drainage using algae strains: A review,” South African J. Chem. Eng., vol. 24, no. June, pp. 62–70, 2017 [Online].
[52] S. Singh and S. Chakraborty, “Performance of organic substrate amended constructed wetland treating acid mine drainage (AMD) of North-Eastern India,” J. Hazard. Mater., vol. 397, p. 122719, Oct. 2020 [Online].
[53] Y. Vasquez et al., “Effect of hydraulic retention time on microbial community in biochemical passive reactors during treatment of acid mine drainage,” Bioresour. Technol., vol. 247, pp. 624–632, Jan. 2017 [Online].
[54] C. M. Barreto et al., “Sidestream superoxygenation for wastewater treatment: Oxygen transfer in clean water and mixed liquor,” J. Environ. Manage., vol. 219, pp. 125–137, 2018 [Online].
[55] A. Torres, J. Quintero, and L. Atehortúa, “Determination of the specific oxygen uptake rate in microorganisms including electrode time response,” Rev. Fac. Ing. Univ. Antioquia, vol. 43, pp. 33–41, 2018. Available:
[56] J. A. Rojas Romero, Tratamiento de aguas residuales. Teoría y principios de diseño, 3rd ed. Bogotá. Colombia: Escuela Colombiana de Ingeniería, 2010.
[57] L. Marchand, M. Mench, D. L. Jacob, and M. L. Otte, “Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review,” Environ. Pollut., vol. 158, no. 12, pp. 3447–3461, Dec. 2010 [Online].
How to Cite
Blanco-Zuñiga, C. R., Chacón-Rojas, Z. X., Villarraga-Castillo, J. S., Guevara-Suarez, H. E., Casteblanco-Castro, Y. N., & Rojas-Arias, N. (2022). Treatment of Acid Drainage from Coal Mines Produced in the Boyacá Region, Colombia, using an Anaerobic Wetland with an Upward Flow. Ingenieria Y Universidad, 26.
Civil and environmental engineering