Resumen
La minería del carbón representa uno de los principales ingresos económicos en el departamento de Boyacá, Colombia. No obstante, los drenajes ácidos de minas (DAM) generados tienen un gran impacto ambiental en la zona debido a la presencia de iones sulfato (SO4-2), metales pesados y bajo pH Este articulo estudia el comportamiento en el contenido de Fe y sulfatos en muestras de AMD cuando son tratadas dentro de un humedal de flujo vertical anaeróbico artificial, analizando la concentración de estos elementos, además del contenido de oxígeno disuelto (OD) y pH en diferentes intervalos de tiempo. Se realizó el tratamiento de una DAM provenientes del departamento de Boyacá utilizando un prototipo de biorreactor con adición de un sustrato orgánico con el fin de proporcionar las condiciones necesarias para el desarrollo de bacterias reductoras de sulfato. Se realizaron mediciones con tiempos de retención hidráulica entre 24 a 120 horas, monitoreando los cambios en el contenido de Fe total, SO4-2, pH y OD. Los datos obtenidos muestran una reducción para Fe total de 88,3%, establecida en 5,61 g∙m-2∙día-1, y para SO4-2 de 34,3% con 9,35g∙m-2∙día-1; alcanzando un grado de remoción máximo de 52,32% a los 120h para sulfatos y 92% para Fe, donde se consigue el pico máximo de remoción, lo que redujo la tasa de remoción de Fe para tiempos mayores. La reducción en la concentración de Fe se relaciona con la reducción de OD y una regulación del pH, además de favorecer la reducción de iones sulfato mediante la formación de las fases mineralógicas pirita y siderita. Estos datos muestran que las condiciones anóxicas del medio orgánico se mantienen, para lo cual se sugiere una etapa de aireación posterior
D. M. Acosta-Bueno, Impactos ambientales de la minería de carbón y su relación con los problemas de salud de la población del municipio de Samacá (boyacá), según reportes ASIS 2005-2011, tesis especialización, Facultad de Ciencias de la Educación, Universidad Distrital Francisco José de Caldas, Bogotá 2016. Available: https://repository.udistrital.edu.co/handle/11349/4130
C. UPME, Ministerio de Minas y Energías, “Plan nacional de desarrollo minero con horizonte a 2025: Minería responsable con el territorio,” Bogotá, Colombia, 2017.
R. H. Garzón, “Minería del carbón en Boyacá: entre la informalidad minera, la crisis de un sector y su potencial para el desarrollo.,” Rev. Zero, vol. 33, no. 2, 2014 [Online]. Available: https://zero.uexternado.edu.co/mineria-del-carbon-en-boyaca-entre-la-informalidad-minera-la-crisis-de-un-sector-y-su-potencial-para-el-desarrollo/
C. A. Agudelo Calderón, J. C. García-Ubaqie, R. Robledo Martínez, C. A. García-Ubaque, and L. Quiroz-Arcentales, “Evaluación de condiciones ambientales: aire, agua y suelos en áreas de actividad minera en Boyacá, Colombia,” Rev. Salud Pública, vol. 18, no. 1, pp. 50–60, Apr. 2016 [Online]. doi: https://doi.org/10.15446/rsap.v18n1.55384.
J. S. Pozo-Antonio, I. Puente-Luna, S. L. López, and M. V. Ríos, “Tratamiento microbiano de aguas ácidas resultantes de la actividad minera: Una revisión,” Tecnol. y Ciencias del Agua, vol. 8, no. 3, pp. 75–91, 2017. [Online]. https://doi.org/10.24850/j-tyca-2017-03-05
I. Park et al., “A review of recent strategies for acid mine drainage prevention and mine tailings recycling,” Chemosphere, vol. 219, pp. 588–606, March. 2019 https://doi.org/10.1016/j.chemosphere.2018.11.053
A. L. Boyles et al., “Systematic review of community health impacts of mountaintop removal mining,” Environ. Int., vol. 107, pp. 163–172, Oct. 2017, doi: 10.1016/j.envint.2017.07.002
I. Moodley, C. M. Sheridan, U. Kappelmeyer, and A. Akcil, “Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products,” Miner. Eng., vol. 126, pp. 207–220, Sep. 2018 [Online]. https://doi.org/10.1016/j.mineng.2017.08.008
L. E. Bertassello, P. S. C. Rao, J. Park, J. W. Jawitz, and G. Botter, “Stochastic modeling of wetland-groundwater systems,” Adv. Water Resour., vol. 112, pp. 214–223, Feb. 2018 https://doi.org/10.1016/j.advwatres.2017.12.007
J. Skousen et al., “Review of Passive Systems for Acid Mine Drainage Treatment,” Mine Water Environ., vol. 36, no. 1, pp. 133–153, Mar. 2017 [Online]. https://doi.org/10.1007/s10230-016-0417-1
J. E. Santos Jallath, F. M. Romero, R. Iturbe Argüelles, A. Cervantes Macedo, and J. Goslinga Arenas, “Acid drainage neutralization and trace metals removal by a two-step system with carbonated rocks, Estado de Mexico, Mexico,” Environ. Earth Sci., vol. 77, no. 3, p. 86, Feb. 2018 [Online]. https://doi.org/10.1007/s12665-018-7248-2
D. Forigua Quicasán, N. Fonseca Forero, and O. Y. Vasquez, “Prevención de drenajes ácidos de mina utilizando compost de champiñón como enmienda orgánica,” Rev. Colomb. Biotecnol., vol. 19, no. 1, pp. 92–100, 2017 [Online]. https://doi.org/10.15446/rev.colomb.biote.v19n1.58904
N. Pérez, A. Schwarz, and H. Urrutia, “Tratamiento del drenaje ácido de minas: estudio de reducción de sulfato en mezclas orgánicas,” Tecnol. y Ciencias del Agua, vol. 8, no. 1, pp. 53–64, 2017 [Online]. https://doi.org/10.24850/j-tyca-2017-01-04
J. F. Shimp et al., “Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials,” Environ. Sci. Technol., vol. 23, no. 1, pp. 41–77, 1993 [Online]. https://doi.org/10.1080/10643389309388441
J. L. Schnoor, “Phytoremediation. Ground-Water Remediation Technologies Analysis Center Technology Evaluation Report TE-98-01,” 1997.
A. M. Pat-Espadas, R. L. Portales, L. E. Amabilis-Sosa, G. Gómez, and G. Vidal, “Review of constructed wetlands for acid mine drainage treatment,” Water (Switzerland), vol. 10, no. 11, pp. 1–25, 2018 [Online]. https://doi.org/10.3390/w10111685
O. C. Türker, H. Böcük, and A. Yakar, “The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent,” J. Hazard. Mater., vol. 252–253, pp. 132–141, May 2013 [Online]. https://doi.org/10.1016/j.jhazmat.2013.02.032
J. J. Oertli and E. Grgurevic, “Effect of pH on the Absorption of Boron by Excised Barley Roots,” Agron. J., vol. 67, no. 2, pp. 278–280, Mar. 1975 [Online]. https://doi.org/10.2134/agronj1975.00021962006700020028x
L. C. Batty and P. L. Younger, “Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: effects of metal and nutrient uptake,” Environ. Pollut., vol. 132, no. 1, pp. 85–93, Nov. 2004 [Online]. https://doi.org/10.1016/j.envpol.2004.03.022
H. M. Leung et al., “Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components,” Environ. Sci. Pollut. Res., vol. 24, no. 10, pp. 9079–9088, Apr. 2017 [Online]. https://doi.org/10.1007/s11356-016-6756-4
P. Eger, “Wetland Treatment for Trace Metal Removal from Mine Drainage: The Importance of Aerobic and Anaerobic Processes,” Water Sci. Technol., vol. 29, no. 4, pp. 249–256, Feb. 1994 [Online]. https://doi.org/10.2166/wst.1994.0203
A. Ordonez, J. Loredo, and F. Pendas, “A Successive Alkalinity Producing System (Saps) As Operational Unit in a Hybrid Passive Treatment System for Acid Mine Drainage,” Mine, Water Environ. Sevilla, vol. 2, pp. 576–580, 1999 [Online]. Available: http://mwen.info/docs/imwa_1999/IMWA1999_Ordonez_575.pdf
E. López Pamo, O. Aduvire, and D. Barettino, “Tratamientos pasivos de drenajes ácidos de mina: Estado actual y perspectivas de futuro,” Bol. Geol. y Min., vol. 113, no. 1, pp. 3–21, 2002 [Online]. Available: http://revistas.igme.es/Boletin/2002/113_1_2002/4-ARTICULO TRATAMIENTOS.pdf
O. R. Stein, D. J. Borden-Stewart, P. B. Hook, and W. L. Jones, “Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands,” Water Res., vol. 41, no. 15, pp. 3440–3448, Aug. 2007 [Online]. https://doi.org/10.1016/j.watres.2007.04.023
K. Dufresne, C. Neculita, J. Brisson, and T. Genty, “Metal Retention Mechanisms in Pilot-Scale Constructed Wetlands Receiving Acid Mine Drainage,” 10th Int. Conf. Acid Rock Drain. IMWA Annu. Conf., pp. 1–6, 2015. Available: https://www.imwa.info/docs/imwa_2015/IMWA2015_Dufresne_145.pdf
J. Brisson and F. Chazarenc, “Maximizing pollutant removal in constructed wetlands: Should we pay more attention to macrophyte species selection?,” Sci. Total Environ., vol. 407, no. 13, pp. 3923–3930, Jun. 2009 [Online]. https://doi.org/10.1016/j.scitotenv.2008.05.047
X. Min, L. Chai, C. Zhang, Y. Takasaki, and T. Okura, “Control of metal toxicity, effluent COD and regeneration of gel beads by immobilized sulfate-reducing bacteria,” Chemosphere, vol. 72, no. 7, pp. 1086–1091, 2008, [Online]. https://doi.org/10.1016/j.chemosphere.2008.04.001
H. He, E. J. Veneklaas, J. Kuo, and H. Lambers, “Physiological and ecological significance of biomineralization in plants,” Trends Plant Sci., vol. 19, no. 3, pp. 166–174, Mar. 2014 [Online]. https://doi.org/10.1016/j.tplants.2013.11.002
C. Tejada-Tovar, Á. Villabona-Ortiz, and L. Garcés-Jaraba, “Adsorción de metales pesados en aguas residuales usando materiales de origen biológico Adsorption of heavy metals in waste water using biological materials,” Tecnológicas, vol. 18, no. 34, pp. 123–7799, 2015. Available: https://docplayer.es/amp/23411784-Adsorcion-de-metales-pesados-en-aguas-residuales-usando-materiales-de-origen-biologico.html
D. B. Johnson and K. B. Hallberg, “Acid mine drainage remediation options: A review,” Sci. Total Environ., vol. 338, no. 1-2 SPEC. ISS., pp. 3–14, 2005 [Online]. https://doi.org/10.1016/j.scitotenv.2004.09.002
C.-M. Neculita, G. J. Zagury, and B. Bussière, “Passive Treatment of Acid Mine Drainage in Bioreactors using Sulfate-Reducing Bacteria,” J. Environ. Qual., vol. 36, no. 1, pp. 1–16, Jan. 2007 [Online]. https://doi.org/10.2134/jeq2006.0066
D. Uçar, “Sequential Precipitation of Heavy Metals Using Sulfide-Laden Bioreactor Effluent in a pH Controlled System,” Miner. Process. Extr. Metall. Rev., vol. 38, no. 3, pp. 162–167, May 2017 [Online]. https://doi.org/10.1080/08827508.2017.1281131
W. E. Magowo, C. Sheridan, and K. Rumbold, “Global Co-occurrence of Acid Mine Drainage and Organic Rich Industrial and Domestic Effluent: Biological sulfate reduction as a co-treatment-option,” J. Water Process Eng., vol. 38, p. 101650, Dec. 2020 [Online]. https://doi.org/10.1016/j.jwpe.2020.101650
Y. Vasquez, M. C. Escobar, C. M. Neculita, Z. Arbeli, and F. Roldan, “Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity,” Chemosphere, vol. 153, pp. 244–253, Jun. 2016 [Online]. https://doi.org/10.1016/j.chemosphere.2016.03.052
D. Kepler and E. McCleary, “Passive aluminum treatment successes.,” Proc. 18th West Virginia Surf. Mine Drain. Task Force Symp., 1997.
A. W. Rose, “Long-term performance of vertical flow ponds - An update,” 7th Int. Conf. Acid Rock Drain. 2006, ICARD - Also Serves as 23rd Annu. Meet. Am. Soc. Min. Reclam., vol. 2, pp. 1704–1716, 2006 [Online]. https://doi.org/10.21000/jasmr06021704
C. Neculia, G. J. Zagury, and B. Bussière, “Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria.,” J. Environ. Qual., vol. 36, pp. 1–16, 2007, doi: https://doi. org/10.2134/jeq2006-0066
J. Demchak, T. Morrow, and J. Skousen, “Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania,” Geochemistry Explor. Environ. Anal., vol. 1, no. 1, pp. 71–80, 2001 [Online]. https://doi.org/10.1144/geochem.1.1.71
A. Sobolewski, “Metal species indicate the potential of constructed wetlands for long-term treatment of metal mine drainage,” Ecol. Eng., vol. 6, no. 4, pp. 259–271, Jun. 1996 [Online]. https://doi.org/10.1016/0925-8574(95)00062-3
P. L. Younger, “The longevity of minewater pollution: a basis for decision-making,” Sci. Total Environ., vol. 194–195, pp. 457–466, Feb. 1997 [Online]. https://doi.org/10.1016/S0048-9697(96)05383-1
P. L. Younger, “Design, construcion and initial operation of full-scale compost-based passive systems for treatment of coal mine drainage and spoil leachate in the UK,” IMWA Symp. Johannesbg., pp. 413–424, 1998.
M. A. Ahmad Farid et al., “A holistic treatment system for palm oil mill effluent by incorporating the anaerobic-aerobic-wetland sequential system and a convective sludge dryer,” Chem. Eng. J., vol. 369, no. March, pp. 195–204, 2019 [Online]. https://doi.org/10.1016/j.cej.2019.03.033
Y. Chen, Y. Wen, Q. Zhou, J. Huang, J. Vymazal, and P. Kuschk, “Sulfate removal and sulfur transformation in constructed wetlands: The roles of filling material and plant biomass,” Water Res., vol. 102, pp. 572–581, Oct. 2016 [Online]. https://doi.org/10.1016/j.watres.2016.07.001
O. J. Hao, J. M. Chen, L. Huang, and R. L. Buglass, “Sulfate‐reducing bacteria,” Crit. Rev. Environ. Sci. Technol., vol. 26, no. 2, pp. 155–187, May 1996 [Online]. https://doi.org/10.1080/10643389609388489
R. Gyure, “Microbial sulfate reduction in acidic (pH 3) strip-mine lakes,” FEMS Microbiol. Lett., vol. 73, no. 3, pp. 193–201, Apr. 1990[Online]. https://doi.org/10.1016/0378-1097(90)90730-E
D. Fortin and T. J. Beveridge, “Microbial sulfate reduction within sulfidic mine tailings: Formation of diagenetic Fe sulfides,” Geomicrobiol. J., vol. 14, no. 1, pp. 1–21, Jan. 1997 [Online]. https://doi.org/10.1080/01490459709378030
M. S. Oncel, A. Muhcu, E. Demirbas, and M. Kobya, “A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater,” J. Environ. Chem. Eng., vol. 1, no. 4, pp. 989–995, Dec. 2013[Online]. https://doi.org/10.1016/j.jece.2013.08.008
I. Kushkevych, J. Kováč, M. Vítězová, T. Vítěz, and M. Bartoš, “The diversity of sulfate-reducing bacteria in the seven bioreactors,” Arch. Microbiol., vol. 200, no. 6, pp. 945–950, Aug. 2018 [Online]. https://doi.org/10.1007/s00203-018-1510-6
W. E. Magowo, C. Sheridan, and K. Rumbold, “Bioremediation of acid mine drainage using Fischer-Tropsch waste water as a feedstock for dissimilatory sulfate reduction,” J. Water Process Eng., vol. 35, p. 101229, Jun. 2020 [Online]. https://doi.org/10.1016/j.jwpe.2020.101229
L. Denis, H. Grzeskowiak, D. Trias, and D. Delaux, “Accelerated Life Testing,” in Reliability of High-Power Mechatronic Systems 2, Elsevier, 2017, pp. 1–56.
J. K. Bwapwa, A. T. Jaiyeola, and R. Chetty, “Bioremediation of acid mine drainage using algae strains: A review,” South African J. Chem. Eng., vol. 24, no. June, pp. 62–70, 2017 [Online]. https://doi.org/10.1016/j.sajce.2017.06.005
S. Singh and S. Chakraborty, “Performance of organic substrate amended constructed wetland treating acid mine drainage (AMD) of North-Eastern India,” J. Hazard. Mater., vol. 397, p. 122719, Oct. 2020 [Online]. https://doi.org/10.1016/j.jhazmat.2020.122719
Y. Vasquez et al., “Effect of hydraulic retention time on microbial community in biochemical passive reactors during treatment of acid mine drainage,” Bioresour. Technol., vol. 247, pp. 624–632, Jan. 2017 [Online]. https://doi.org/10.1016/j.biortech.2017.09.144
C. M. Barreto et al., “Sidestream superoxygenation for wastewater treatment: Oxygen transfer in clean water and mixed liquor,” J. Environ. Manage., vol. 219, pp. 125–137, 2018 [Online]. https://doi.org/10.1016/j.jenvman.2018.04.035
A. Torres, J. Quintero, and L. Atehortúa, “Determination of the specific oxygen uptake rate in microorganisms including electrode time response,” Rev. Fac. Ing. Univ. Antioquia, vol. 43, pp. 33–41, 2018. Available: https://revistas.udea.edu.co/index.php/ingenieria/article/view/18626
J. A. Rojas Romero, Tratamiento de aguas residuales. Teoría y principios de diseño, 3rd ed. Bogotá. Colombia: Escuela Colombiana de Ingeniería, 2010.
L. Marchand, M. Mench, D. L. Jacob, and M. L. Otte, “Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review,” Environ. Pollut., vol. 158, no. 12, pp. 3447–3461, Dec. 2010 [Online]. https://doi.org/10.1016/j.envpol.2010.08.018

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2022 Cesar René Blanco-Zuñiga, Zully Ximena Chacón-Rojas, Juan Sebastian Villarraga-Castillo, Heidy Elizabeth Guevara-Suarez, Yesica Nataly Casteblanco-Castro, Nicolás Rojas Arias