Published Dec 15, 2023


Google Scholar
Search GoogleScholar

Julian Andres Delgado-Martinez, MsC

Santiago Muñoz-Giraldo, Bsc



Objective: Through the FACSAT program, the Colombian Air Force aims to promote the independence of the Colombian space initiative. This article proposes the operational orbit for the FACSAT-2 satellite mission, intended for capturing images facilitating the detection and classification of Colombian terrain using satellite technology. Materials and Methods: To advance aerospace technology, this study recommends a specific operational orbit for FACSAT-2. The selection considers operational requirements, geographical location, launch windows, commercial orbit availability, and data from FACSAT-1 and simulated scenarios. Results and Discussion: The operational orbit is crucial in satellite system design. Restrictions on elevation angles and considerations regarding total accesses, access time, among others, reflect a comprehensive approach, strengthening the foundation for selecting the operational orbit. Conclusions: Criteria for the FACSAT-2 operational orbit were defined, addressing inclination, total accesses, access time, revisit time, altitude, and launch window. Simulations indicate that an inclination ≤ 40° offers optimal performance, with an optimal altitude of 550 km. The orbit with a 23° inclination, 550 km altitude, scheduled for 2022 Q3 from India, stands out for providing maximum accessibility and coverage for Colombia.


Orbit, Satellite, Launch, FACSAT-2Órbita, Satélite, lanzamiento, FACSAT-2

[1] W. J. Larson y J. R. Wertz, Space Mission Analysis and Design, El Segundo, California: The Space Technology Library, 1999.
[2] M. Capderou, Handbook of Satellite Orbits, Pasadena, California: Springer, 2014.
[3] C. Nieto-Peroy y M. R. Emami, «CubeSat Mission: From Design to Operation,» Applied Sciences, Toronto, 2019.
[4] H. Riebeek y R. Simmon, «Catalog of Earth Satellite Orbits,» 04 09 2009. [En línea]. Available: [Último acceso: 29 03 2020].
[5] S. S. Board y N. R. Council, «Landsat and Beyond: Sustaining and Enhancing the Nation's Land Imaging Program,» National Academies Press, 2014.
[6] Systems Tool Kit , «STK free trial options,» 2020. [En línea]. Available:
[7] P. Sintes, «Mission and Thermal Analysis of the UPC Cubesat,» Universitat Politécnica de Catalunya, Barcelona, 2009.
[8] L. Qiao, «Garada SAR formation flying - Orbit Modelling and Analysis, Simulated Mission Planning,» Australian Centre for Space Engineering Research (ACSER), Sydney, 2013.
[9] K. Kamalaldin y M. Okasha, «Low Inclination Circular Orbits for Remote Sensing Satellites,» Kuala Lumpur , 2014.
[10] I. Z. M. Sanad, «Tradeoffs for Selecting Orbital Parameters of an Earth Observation Satellite,» ResearchGate, Vancouver, 2012.
[11] P. Arroyo, «Mission and Thermal Analysis of the UPC Cubesat,» Barcelona, 2009.
[12] S. Cakaj, «The Coverage Belt dor Low Earth Orbiting Satellites,» ResearchGate, 2016.
[13] R. Jiménez, S. Rincón y L. Cardenas, «FACSAT-1 Ground Station performance,» Washington D.C, 2019.
[14] IGAC, «Contenido Geoportal IGAC,» 21 01 2016. [En línea]. Available:
[16] Presidencia, «Asi es Colombia,» 08 05 2019. [En línea]. Available:
[17] IGAC, «Geoportal-Fronteras Marítimas y Mapa Físico,» 30 09 2020. [En línea]. Available:
[18] Cancillería de Colombia, «Delimitación Marítima Colombia,» 10 02 2021. [En línea]. Available:
[19] Australian Space Academy, «SPECIFYING SATELLITE ORBITS,» Australian Space Academy, 10 09 2020. [En línea]. Available: [Último acceso: 02 05 2020].
[20] D. Selva y D. Krejcl, «A survey and assessment of the capabilities of Cubesats for Earth observation,» ELSEVIER. Acta Astronautica, Cambridge, MA, 2012.
[21] I. Shuib y M. Idres, «Investigation of Malaysian Low Earth Orbits for Remote Sensing Applications,» Kuala Lumpur, 2016.
[22] J. Woodburn y S. Lynch, «A NUMERICAL STUDY OF ORBIT LIFETIME,» ResearchGate, Washington, 2005.
[23] J. Sellers, «Satellite Tool Kit Astronautics Primer,» McGraw-Hill Inc., New York, 1997.
[24] H. Septanto, S. Utama y R. Heru, «Indonesia coverage simulation of SAR satellite at near-equatorial orbit,» IOP Conference Series: Earth and Environmental Science, Jakarta, 2017.
[25] N. Crisp, S. Livadiotti y P. Roberts, «A Semi-Analytical Method for Calculating Revisit Time for Satellite Constellations with Discontinuous Coverage,» The University of Manchester, Manchester, 2018.
[26] K. Schilling, «Mission Analyses for Low-Earth-Observation - Missions with Spacecraft Formations,» NATO, Würzburg, 2013.
[27] A. Rosengren, «Dynamical cartography of Earth satellite orbits,» University of Arizona, Tucson, 2018.
[28] H. Yi, ChenX y D. Wang, «SATELLITE IMAGING DIRECTION ANGLES ESTIMATION METHOD BASED ON RATIONAL POLYNOMIAL COEFFICIENTS,» The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, 2020.
[29] D. Oltrogge y K. Leveque, «An Evaluation of CubeSat Orbital Decay,» Colorado Springs, 2011.
[30] L. Qiao, C. Rizos y A. Dempster, «Analysis and Comparison of CubeSat Lifetime,» Australian Centre for Space Engineering Research, Sydney, 2014.
[31] Systems Tool Kit, «STK Numerical Integration,» 30 01 2021. [En línea]. Available:
[32] Systems Tool Kit, «Defining the Fidelity of Calculations - Lifetime Tool,» 01 09 2016. [En línea]. Available: [Último acceso: 21 03 2021].
How to Cite
Delgado-Martínez, J. A., & Muñoz-Giraldo, S. (2023). Determination of an Operational Orbit for the FACSAT 2 Earth Observation Satellite Mission. Ingenieria Y Universidad, 27.
Engineering and education