Revision of Combustion with oxygen-enriched air as a strategy to increase energy efficiency
##plugins.themes.bootstrap3.article.details##
Among the available alternatives for increasing the energy efficiency in combustion processes there is the combustion with oxygen-enriched air, which consists in increasing the concentration of oxygen in the atmospheric air to reach levels of up to 100%. This study is a review of the phenomenology of the combustion process with enriched air, with emphasis on thermodynamic aspects, chemical and kinetic. Likewise, we present the methods for obtaining the oxygen enriched air more applied so far, such as the oscillating pressure adsorption in molecular sieves and cryogenic distillation, and those that are in a state of development, such as the separation membranes. Finally, we review the most common applications of combustion with enriched air, such as high-temperature industrial processes, CO2 capture and sequestration, and internal combustion engines, as well as research advances on this issue in Colombia.
Combustion with enriched air, energy efficiency, high temperature, membranasCombustión con aire enriquecido, eficiencia energética, alta temperatura, membranas
BANDEIRA SANTOS, A. Á.; TORRES, E. A. y DE PAULA PEREIRA, P. A. Experimental investigation of the natural gas confined flames using the OEC. Energy. 2011, vol. 36, pp. 1527-1534.
BAUKAL, C. E. Oxygen-Enhanced Combustion. Oklahoma: CRC press LLC. 1998.
BUHRE, B.J.P; ELLIOTT, L.K.; SHENG, C.D.; GUPTA, R.P.; WALL, T.F. Oxy-fuel combustión technology for coal-fired power generation. Progress in Energy and Combustion Science. 2005, vol. 31 , issue 4, pp.283-307.
BURDYNY, T. y STRUCHTRUP, H. Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process. Energy. 2010, vol. 35, núm. 5, pp. 1884-1897.
CACUA, K.; AMELL, A. y CADAVID, F. Effects of oxygen enriched air on the operation and performance of a diesel-biogas dual fuel engine. Biomass and Bioenergy. 2012, vol. 45, pp. 159-167.
CHEN, C. M.; ZHAO, C. S.; LIANG, C., et al. Calcination and sintering characteristics of limestone under O2/CO2 combustion atmosphere. Fuel Process. Technol. 2007, vol. 88, pp.171-178.
CHIN, S.; JURNG, J.; LEE, J. H., et al. Oxygen-enriched air for co-incineration of organic sludges with municipal solid waste: A pilot plant experiment. Waste Management. 2008, vol. 28, núm. 12, pp. 2684-2689.
CHUNLING, Y.; JIANGWE, C. y BINGYUAN, H. Performance Experiment of Gasoline Engine by Using Oxygen-Enriched Intake Air. Third International Conference on Transportation Engineering (ICTE). 2011, pp. 3086-3091.
COOMBE, H. S. y NIEH, S. Polymer membrane air separation performance for portable oxygen enriched combustion applications. Energy Conversion and Management. 2007, vol. 48, núm. 5, pp. 1499-1505.
CROISET, E. y THAMBIMUTHU, K. V. NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel. 2001, vol. 80, núm. 14, pp. 2117-2121.
DAOOD, S. S.; NIMMO, W.; EDGE, P., et al. Deep-staged, oxygen enriched combustion of coal. Fuel. 2011, .doi:10.1016/j.fuel.2011.02.007
DAVIDSON, J. G. Method and apparatus for membrane separation of air into nitrogen and oxygen elements for use in internal combustion engines. Nixon, TX: United States Patent, World Air Energy Corporation, 2006.
DECHAMPS, P. y PILAVACHI, P. A. Research and development actions to reduce CO2 emissions within the European Union. Oil & Gas Science and Technology. 2004, vol. 59, pp. 323-330
DITARANTO, M. y OPPELT, T. Radiative heat flux characteristics of methane flames in oxyfuel atmospheres. Experimental Thermal and Fluid Science. 2011, vol. 35, pp. 1343-1350.
DUAN, L.; ZHAO, C.; ZHOU, W., et al. O2/CO2 coal combustion characteristics in a 50 kW circulating fluidized bed. International Journal of Greenhouse Gas Control. 2011, vol. 5, pp. 770-776.
FAVRE, E.; BOUNACEUR, R. y ROIZARD, D. A hybrid process combining oxygen enriched air combustion and membrane separation for post-combustion carbon dioxide capture. Separation and Purification Technology. 2009, vol. 68, núm. 1, pp. 30-36.
GONZÁLEZ, J. C.; AMELL, A. A.; CADAVID, F. J. Características de la combustión con aire enriquecido con oxígeno y perspectivas de aplicación en PYME con procesos de alta temperatura. Ingeniería e Investigación. 2009, vol. 29, núm. 3, pp. 23-28.
HORBANIUC, B.; MARIN, O.; DUMITRAŞCU, G., et al. Oxygen-enriched combustion in supercritical steam boilers. Energy. 2004, vol. 29, núm. 3, pp. 427-448.
HOUNTALAS, D.; RAPTOTASIOS, S.; ZANNIS, T., et al. Phenomelological Modelling of Oxygen-Enriched Combustion and Pollutant Formation in Heavy-Duty Diesel Engines using Exhaust Gas Recirculation. SAE Technical Paper. 2012, vol. 01, pp.1725.
INGE DAHL, P.; FONTAINE, M. L.; PETERS, T., et al. Development and testing of membrane materials and modules for high temperature air separation. Energy Procedia. 2011, vol. 4, pp. 1243-1251.
JANKES, G.; STANOJEVIĆ, M.; KARAN, M., et al. The use of technical oxygen for combustión processes in industrial furnaces. FME Transactions. 2003, vol. 31, pp. 31-37.
JIANGWEI, C.; CHUNLING, Y. y GUANGMING, Q. Reducing HC emissions of gasolina engine during cold-start by using a oxygen-enriched intake air system. Remote Sensing, Environment and Transportation Engineering (RSETE), International Conference.
KAJITANI, S.; CLASEN, E;, CAMPBELL, S., et al. T. Partial-Load and Start-up Operations of Spark-ignition Engine with Oxygen Enriched Air. SAE Technical Paper 932802. 1993. doi:10.4271/932802.
KANSHA, Y.; KISHIMOTO A.; NAKAGAWA, T., et al. A novel cryogenic air separation process based on self-heat recuperation. Separation and Purification Technology. 2011, vol. 77, núm. 3, pp. 389-396.
KARIMI, H. J. y SAIDI, M. H. Heat Transfer and Energy Analysis of a Pusher Type Reheating Furnace Using Oxygen Enhanced Air for Combustion. Journal of Iron and Steel Research, International. 2010, vol. 17, núm 4, pp. 12-17.
KHARE, S. P.; WALL, T. F.; FARIDA, A. Z., et al. Factors influencing the ignition of flames from air-fired swirl PF burners retrofitted to oxy-fuel. Fuel. 2008. vol. 87, pp. 1042-1049.
KRZYWANSKI, J.; CZAKIERT, T.; MUSKALA, W., et al. Modeling of solid fuels combustión in oxygen-enriched atmosphere in circulating fluidized bed boiler: Part 1. The mathematical model of fuel combustion in oxygen-enriched CFB environment. Fuel Processing Technolog., 2010, vol. 91, pp. 290-295.
LI, H.Y. y WANG, H. 2003. Performance Compare Analyses of High Temperature Air Combustion and Oxyboosted Combustion Technology. Industrial Heating. 2003, vol. 5, pp. 9-12.
LI, S. y FAN, Q. Oxygen enrichment using small-pore silicoaluminophosphate membranes. United States patent application. 2012, vol. 837, pp.563.
LIANG, F.; JIANG, H.; SCHIESTEL, T., et al. High-Purity Oxygen Production from Air Using Perovskite Hollow Fiber Membranes. Industrial & Engineering Chemistry Research. 2010, vol. 49, num. 19, pp. 9377-9384.
LIN, H. Novel Membranes and Processes for Oxygen Enrichment (No. DOE/EE0003462). Menlo Park, CA.: Membrane Technology and Research, Inc., 2011.
MADLOOL, N. A.; SAIDUR, R.; HOSSAIN, M. S., et al. A critical review on energy use and savings in the cement industries. Renewable and Sustainable Energy Reviews. 2011, vol. 15, pp. 2042-2060.
MAZAS, A. N.; FIORINA, B.; LACOSTE, D. A., et al. Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames. Combustion and Flame. 2011, vol. 158, núm. 12, pp. 2428-2440
MELO, G. F.; LACAVA, P. T. & CARVALHO JR, J. A. A case study of air enrichment in rotary kiln incineration. International Communications in Heat and Mass Transfer. 1998, vol. 25, pp. 681-692.
MERILÄINEN, A., SEPPÄLÄ, A. & KAURANEN, P. Minimizing specific energy consumption of oxygen enrichment in polymeric hollow fiber membrane modules. Applied Energy. 2012, vol. 94, pp. 285-294.
MOFARAHI, M.; TOWFIGHI, J. y FATHI, L. Oxygen Separation from Air by Four-Bed Pressure Swing Adsorption. Industrial & Engineering Chemistry Research. 2009, vol. 48, núm. 11, pp. 5439-5444.
MOLINA, A., & SHADDIX, C. R. Efecto del co2 en la velocidad de combustión de semicoques de carbón en aplicaciones de oxi-combustión. Energética. 2007, vol. 38, pp. 101-106.
NGUYEN, L. D. K.; SUNG, N. W.; LEE, S. S., et al. Effects of split injection, oxygen enriched air and heavy EGR on soot emissions in a diesel engine. International Journal of Automotive Technology. 2011, vol. 12, núm. 3, pp. 339-350.
NIMMO, W.; DAOOD, S. S. y GIBBS, B. M. The effect of O2 enrichment on NOx formation in biomass co-fired pulverised coal combustion. Fuel. 2010, vol. 89, núm. 10, pp. 2945-2952.
POOLA, R.; SEKAR, R. y COLE, R. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications. United States Patents. The University of Chicago ILL, 1997.
QIU, K. y HAYDEN, A. C. S. Increasing the efficiency of radiant burners by using polymer membranes. Applied Energy. 2009. Vol. 86, ním. 3, pp. 349-354.
QUIN, W.; REN, FN.; EGOLFOPOULOS, S Wu., et al. Oxygen composition modulation effects on flame propagation and NOx formation in methane/air premixed flames. Proceedings of the Combustion Institute. 2000, vol. 28, núm. 2, pp. 1825-1831.
RIZK, J.; NEMER, M. y CLODIC, D. A real column design exergy optimization of a cryogenic air separation unit. Energy. 2012, vol. 37, núm. 1, pp. 417-429.
SAASTAMOINEN, J.; TOURUNEN, A. y PIKKARAINEN, T. Fluidized Bed Combustion in High Concentrations of O2 and CO2. The 19th International Conference on Fluidized Bed Combustion. Vienna: Austria. 2006.
SCHNEIDER, M.; ROMER, M.; TSCHUDIN, M., et al. Sustainable cement production-present and future. Cement and Concrete Research. 2011, vol. 41, pp. 642-650.
SEKAR, R. y POOLA, R. B. Argonne National Lab., IL (United States). Demostration of Oxygen-Enriched Combustion System on a Light-Duty Vehicle to Reduce Cold-Start Emissions. International symposium on automotive technology and automotion: in fusion of tecnhical excellence, Florence (Italy), 16-19 Jun. 1997, p. 11.
SKEEN, S. A.; YABLONSKY, G. y AXELBAUM, R. L. Characteristics of non-premixed oxygenenhanced combustion: I. The presence of appreciable oxygen at the location of máximum temperature. Combustion and Flame. 2009, vol. 156, pp. 2145-2152.
SKEEN, S. A.; YABLONSKY, G.; AXELBAUM, R. L. Characteristics of non-premixed oxygenenhanced combustion: II. Flame structure effects on soot precursor kinetics resulting in soot-free flames. Combustion and Flame. 2010, vol. 157, pp. 1745-1752.
SONG, J.; ZELLO, V.; BOEHMAN, A. L., et al. Comparison of the impact of intake oxygen enrichment and fuel oxygenation on diesel combustion and emissions. Energy & Fuels. 2004, vol. 18, núm. 5, pp. 1282-1290.
STADLER, H.; BEGGEL, F.; HABERMEHL, M., et al. Oxyfuel coal combustion by efficient integration of oxygen transport membranes. International Journal of Greenhouse Gas Control. 2011, vol. 5, pp. 7-15.
STAIGER, C. L.; VAUGHN, M. R.; MILLER, K. A., et al. Sandia National Laboratories. Hybrid Membrane-PSA system for separating oxygen from air. United States Patent number 7,875,101. 2011.
SUBRAMANIAN, K. A. y RAMESH, A. Experimental investigation on the use of water diesel emulsion with oxygen- enriched air in a DI Diesel Engine. SAE Technical Paper 2001-01-0205, 2001. doi:10.4271/2001-01-0205.
TAN, R.; CORRAGIO, G. y SANTOS, S. Oxy-coal combustion with flue gas recycle for the power generation industry - a literature review. Velsen Noord: The Netherlands: International Flame Research Foundation (IFRF). 2005.
TOFTEGAARD, M. B.; BRIX, J.; JENSEN, P. A., et al. Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science. 2010, vol. 36, núm. 5, pp. 581-625.
TRANIER, J. P.; DUBETTIER, R.; DARDE, A., et al. Air separation, flue gas compression and purification units for oxy-coal combustion systems. Energy Procedia. 2011, vol. 4, pp. 966-971.
VEGA, C. Sistema de Oxi-Combustión para hornos continuos. Producción+Limpia. 2006, vol. 1, núm. 1, pp. 81-86
WALL, T. F. Combustion processes for carbon capture. Proceedings of the Combustion Institute. 2007. vol. 31, pp. 31-47.
WANG, L.; HAWORTH, D. C.; TURNS, S. R., et al. Interactions among soot, thermal radiation, and NOx emissions in oxygen-enriched turbulent nonpremixed flames: a fluid dynamics modeling study. Combustion and Flame. 2005, vol. 141, pp. 170-179.
WRIGHT, J. y COPELAND, R. Advanced Oxygen Separation Membranes. Chicago, Illinois: Gas Research Institute, 1990, p. 75
WU, K.K.; CHANG, Y.C.; CHEN, C.H., et al. High-efficiency combustion of natural gas with 21-30% oxygen-enriched air. Fuel. 2010, vol. 89, núm. 9, pp. 2455-2462.
WU, Y.Y. y HUANG, D. Improving the performance of a small spark-ignition engine by using oxygen-enriched intake air. SAE Technical Paper. 2007, vol. 32, pp.4.
YANG, H.; FAN, S.; LANG, X., et al. Economic comparison of three gas separation technologies for CO2 capture from power plant flue gas. Chinese Journal of Chemical Engineering. 2011, vol. 19, núm. 4, pp. 615-620.
YANG, Y.H.; DENG, N.Y. y ZHANG, S.Q. Effects of coal oxygen-enriched combustion on energy saving and environment. Materials for Renewable Energy & Environment (ICMREE). International Conference on, 20-22 May 2011, pp.1552-1555.
YAP, L. T.; POURKASHANIAN, M.; HOWARD, L., et al. Nitric-oxide emissions scaling of buoyancy-dominated oxygen-enriched and preheated methane turbulent-jet difusión flames. Twenty-Seventh Symposium on Combustion - The Combustion Institute. 1998, pp. 1451-1460.
YU, Z.; MA, X. y LIAO, Y. Mathematical modeling of combustion in a grate-fired boiler burning straw and effect of operating conditions under air- and oxygen-enriched atmospheres. Renewable Energy. 2010, vol. 35, pp. 895-903.
ZEMAN, F. Oxygen combustion in cement production. Energy Procedia. 2009, vol. 1, núm. 1, pp. 187-194.
ZHOU, J. X.; CORDIER, M.; MOUNAÏM-ROUSSELLE, C., et al. Experimental estimate of the laminar burning velocity of iso-octane in oxygen-enriched and CO2-diluted air. Combustion and Flame. 2011, vol. 158, pp. 2375-2383.
ZHOU, J.; FOUCHER, F.; DE PERSIS, S. & PILLIER, L. Effect of oxygen enrichment and CO2 dilution on laminar methane flame velocities. European Combustion Meeting, Cardiff: Royaume-Uni. 2011.
ZHU, Y.; LEGG, S. y LAIRD, C. D. Optimal operation of cryogenic air separation systems with demand uncertainty and contractual obligations. Chemical Engineering Science. 2011, vol. 66, núm. 5, pp. 953-963.