Published Jul 30, 2015



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Downloads


Candelaria Tejada-Tovar, MSc

Ángel Villabona-Ortiz, MSc

Luz Ercilia Garcés-Jaraba, MSc

##plugins.themes.bootstrap3.article.details##

Abstract

The high toxic concentrations of mercury (Hg) in water bodies and its negative impact on the environment has resulted in the need for research on effective and low-cost methods for the treatment of industrial effluents, such as adsorption. This research compares the feasibility and viability of the Hg (II) adsorption abilities of cassava and lemon citric acid-modified peels. The results showed that the modified peel of cassava has a better adsorption ability compared to that of lemon. The kinetics models that best fit the experimental data were a pseudo-second order model and the Elovich model for both modified biomasses. This means that the mechanism that controls the adsorption is a second order reaction, and also shows that the catalytic area of the adsorbent is heterogeneous; whereas the Freundlich isotherm describes better the adsorption process. In conclusion, the use of waste material is posible for Hg (II) removal. The study of chemical modifications is suggested to improve the adsorption percentages.

Keywords

biomasa, mercurio, modificación químicabiomass, mercury, chemical modification

References
[1] O. Higuera, L. C. Flórez and J. V. Arroyave, “Diseño de un biofiltro para reducir el índice de contaminación por cromo generado en las industrias del curtido de cueros”, Dyna, vol. 76, no. 160, pp. 107-119, 2009.
[2] A. G. González and O. S. Pokrovsky, “Metal adsorption on mosses. Toward a universal adsorption model”, Journal of Colloid and Interface Science, vol.415, pp. 169-178, 2014.
[3] A. Pérez, V. Meseguer, O. Sáenz and M. Llorens, “Biosorption of chromium (III) by Orange (Citrus cinensis) waste. Batch and continuous studies”. Chemical Engineering Journal, vol. 155, pp. 199-206, 2009.
[4] L. Wang and C. Lin, “Adsorption of chromium (III) ion from aqueous solution using rice hull ash”. Revista del Instituto Chino de Ingenieros Químicos, vol. 39, no. 4, pp. 367-373, 2008.
[5] J. Yang, C. Ling, L. Z. Liu, W. L. Shi and X. Z. Meng, “Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai”, Ecotoxicology and Environmental Safety, vol. 102, pp. 129-135, 2014.
[6] S. Luo, X. Li, L. Chen, J. Chen, Y. Wan and C. Liu, “Layer-by-layer strategy for adsorption capacity fattening of endophytic bacterial biomass for highly effective removal of heavy metals”, Chemical Engineering Journal, vol. 239, pp. 312-321, 2014.
[7] M. A. Capó, Principios de ecotoxicología. Madrid: McGraw Hill, 2002.
[8] M. Santarder y P. Tapia, “Biosorción de iones cobre con biomasa de algas y orujos deshidratados”, Rev. Metal. Madrid, vol. 45, pp. 365-374, 2011.
[9] M. Pinzón-Bedoya y A. Cardona, “Influencia del pH en la bioadsorción de Cr (III) sobre cáscara de naranja. Determinación de las condiciones de operación en proceso discontinuo”, Revista de la Facultad de Ciencias Básicas, vol. 8, no. 1, pp. 45-53, 2010.
[10] F. Baldi, M. Gallo and D. Marchetto, “Seasonal mercury transformation and surficial sediment detoxification by bacteria of Marano and Grado lagoons”, Estuarine Coastal Shelf Sci, 2012 [online]. Availabre: doi.org/10.1016/j.ecss.2012.02.008
[11] A. Hutchison and D. Atwood, “Mercury pollution and remediation. The chemist’s response to a global crisis”, J. Chem. Crystal, vol. 33, pp. 631-645, 2003.
[12] O. Parkash, S. Lafferty and R. Meagher, “Biotechnological approaches for phytoremediation”, in Plant Biotechnology and Agriculture, A. Altman and M. P. Hasegawa, Eds. Oxford: Academic Press, 2012, pp. 309-328.
[13] A. Le Jeune, F. Bourdiol and L Aldamman, “Factors affecting methyl mercury biomagnification by a widespread aquatic invertebrate predator, the phantom midge larvae Chaoborus”, Environ Pollut, vol. 165, pp. 100-108, 2012.
[14] S. Pandey and S. B. Mishra, “Organic-inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake”, Journal Colloid Interface Science, vol. 361, pp. 509-520, 2011.
[15] L. Khezami and R. Capart, “Removal of chromium (VI) from aqueous solution by activated carbons. Kinetic and equilibrium studies”, Journal of Hazard Material, vol. 123, pp. 223-231, 2005.
[16] R. M. Shrestha, I. Varga, J. Bajtai and M. Varga, “Design of surface functionalization of waste material originated charcoals by an optimized chemical carbonization for the purpose of heavy metal removal from industrial waste waters”, Microchemical Journal, vol. 108, pp. 224-232, 2013.
[17] M. Torab-Mostaedi, M. Asadollahzadeh, A. Hemmati and A. Khosravi, “Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel”, Journal of the Taiwan Institute of Chemical Engineers, vol. 44, pp. 295-302, 2013.
[18] M. Ajmal, R. Khan and J. Ahmad, “Adsorption studies on Citrus reticulate (fruit peel of orange). Removal and recovery of Ni (II) from electroplating wastewater”, Journal of Hazardous Materials, vol. 79, pp. 117-131, 2000.
[19] C. Villanueva y N. Tapia, “Bioadsorción de Cu (II) por biomasas que contienen pectina”, Revista Peruana de Química e Ingeniería Química, vol. 8, no. 1, 2005.
[20] F. J. Barragán, “Elaboración de un adsorbente de plomo y cadmio del agua a partir de los residuos de la industrialización del limón (Citrus aurantifoliaswingle)” [Tesis doctorado en ciencias de la F.C.B.A], Colima, México: Universidad de Colima, 2005.
[21] F. Colak, N. Atarb, D. Yazıcıoglu and A. Olgun, “Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance”, Chemical Engineering Journal, vol. 173, no. 2, pp. 422-428, 2011.
[22] Y. Ho and C. Wang, “Sorption equilibrium of mercury onto ground-up tree fern”, Journal of Hazardous Materials, vol. 156, pp. 398-404, 2008.
[23] I. Ghodbane and O. Hamdaoui, “Removal of mercury (II) from aqueous media using eucalyptus bark. Kinetic and equilibrium studies”, Journal of Hazardous Materials, vol. 160, pp. 301-309, 2008.
[24] M. Lohani, A. Singh, D. Rupainwar and D. Dharc, “Studies on efficiency of guava (Psidiumguajava)bark as bioadsorbent for removal of Hg (II) from aqueous solutions”, Journal of Hazardous Materials, vol. 159, pp. 626-629, 2008.
[25] S. Basha, Z. P.V. Murthy and B. Jha, “Sorption of Hg (II) onto Carica papaya. Experimental studies and design of batch sorber”, Chemical Engineering Journal, vol. 147, pp. 226-234, 2009.
[26] C. Rocha, D. Morozin, R. da Silva, and A. da Silva, “Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents”, Journal of Hazardous Materials, vol. 166, pp. 383-388, 2009.
[27] M. Madhava, D. Kumar, P. Venkateswarlu and K. Seshaiah, “Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste”, Journal of Environmental Management, pp. 634-643, 2009.
[28] A. Neda, K. Tahereh and S. Mansooreh, “Elimination of mercury by adsorption onto activated carbon prepared from the biomass material”, Journal of Industrial and Engineering Chemistry, vol. 18, pp. 283-289, 2012.
[29] H. B. Asberry, C.-Y. Kuo, C.-H. Gung, E. D. Conte and S. Y. Suen, “Characterization of water bamboo husk biosorbents and their application in heavy metal ion trapping”, Microchemical Journal, vol. 113, pp. 59-63, 2014.
[30] S. Pitsari, E. Tsoufakis and M. Loizidou, “Enhanced lead adsorption by unbleached newspaper pulp modified”, Chemical Engineering Journal, vol. 223, pp. 18-30, 2013.
[31] K. Y. Foo and B. H. Hameed, “Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation”, Bioresource Technology, vol. 104, pp. 679-686, 2011.
[32] A. Pérez, V. Meseguer, O. Sáenz and M. Llorens, “Biosorption of chromium (III) by Orange (Citrus cinensis) waste: Batch and continuous studies”, Chemical Engineering Journal, vol. 155, pp. 199-206, 2009.
[33] R. S. Vieira and M. Marisa, “Dynamic and static adsorption and desorption of Hg (II) ions on chitosan membranes and spheres”, Water Research, vol. 40, pp. 1726-1734, 2006.
How to Cite
Tejada-Tovar, C., Villabona-Ortiz, Ángel, & Garcés-Jaraba, L. E. (2015). Kinetics of adsorption in mercury removal using cassava (Manhiot esculenta) and lemon (Citrus limonum) wastes modified with citric acid. Ingenieria Y Universidad, 19(2), 37 - 52. https://doi.org/10.11144/Javeriana.iyu19-2.kamr
Section
Articles